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A basic cornerstone of security is to verify the integrity of fundamental data 

stored in the system.  This integrity checking is being achieved using integrity 

tools such Tripwire, which depend on the integrity and proper operation of the 

operating system, i.e. these applications assume that the operating system 

always operates correctly.  When this assumption is not valid, the integrity 

applications cannot provide a reliable result, and consequently may provide a 

false negative.  Once the operating system is compromised, a novice attacker, 

using tools widely available on the Internet (rootshell.com, etc), could easily 

defeat integrity tools that rely on the operating system. 

A novel way to overcome this traditional integrity problem is to use an 

independent auditor. The independent auditor uses an out-of-band verification 

process that does not depend on the underlying operating system.  The 
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resultant system provides extremely strong integrity guarantees, detecting 

modifications to approved objects as well as detecting the existence of 

unapproved and thus unsigned objects.  This is accomplished without any 

modifications to the host operating system.   

As an auditor we use a StrongARM EBSA-285 Evaluation Board, with a SA-

110 microprocessor and 21285 core logic.   
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C h a p t e r  1  

1 INTRODUCTION 

 

Computer Systems have been made increasingly secure over the past decades. However 

new attacks and the spread of harmful viruses have shown that better method must be used. 

One approach gaining increasing popularity in the computer community is to use Intrusion 

Detection Systems (IDS) to improve the security of the systems. 

 Intrusion Detection Systems detect an intruder breaking into your system, or a user 

performing any illegitimate action or misuse of system resources. Using a common 

analogy, having an Intrusion Detection System is like having a “burglar Alarm” in your 

house. The alarm will not prevent the burglar from breaking into your house, but it will 

detect and warn you of the problem. 

Since the publication of the first research in intrusion detection systems, a large number of 

applications have been developed, using different techniques. One technique to accomplish 

this detection is the use of file system integrity checkers. When a system is compromised, 

an attacker will often alter certain key files to provide continued access and to prevent 

detection. The changes could target the kernel, libraries, log files or other sensitive files. 

These file system integrity checkers detect a change and trigger an alert. 

Continuing with the “burglar alarm” analogy, this kind of IDS will check if forged copies 

have replaced your Picasso paintings and make sure your jewelry is still there. 

To ensure the integrity of the file system, two approaches can be followed. 
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The first approach is to create a secure database, which is usually composed of hashes of 

the important files. The stored hash will be periodically checked against the new computed 

hash. A hash-function is a one-way transformation that mathematically computes a digest 

of the message, transforming a message from an arbitrary length to a message of fixed 

length. This method is used with tools such as Tripwire [13], Aide [19], Dragon Squire [20] 

and others. 

The second, more recent approach is to create digital signatures of sensitive data, such as 

executable files, using public keys. Using asymmetric cryptography, it is possible to sign 

files. Briefly, asymmetric cryptography requires two keys, one for encryption and one for 

decryption. You can encrypt the binaries you want to release with your own (private) key, 

and post the other (public) key in a secure database. If these files are to be opened, the OS 

will decrypt the file using the public key and ensure that the file has not been corrupted. In 

practice, the binary itself is not encrypted. Rather, a hash of the binary is, then this hash is 

appended. This approach is discussed in [16], and [17].  

Both approaches have advantages and drawbacks that will be discuss in depth in the 

following chapters, but they also have a common flaw. The auditing relies on the Operating 

System. All the previous applications have made the assumption that the OS itself is not 

corrupted. Once the operating system is compromised, a novice attacker, using tools widely 

available in the Internet, could easily defeat integrity tools that rely on the operating 

system. For example, in the Linux operating system, redirecting system calls using kernel 

modules will compromise the system [11]. Usually a system is trusted because a good IDS 

has been running for a long time. However, the system typically has not been checked 

before the installation. Hence the IDS may be running in an insecure environment. 
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Finally, most proprietary operating systems are trusted by default, assuming that the OS 

will work as expected. 

Another important flaw in the database approach is the large time intervals between checks 

in the database, which is a consequence of the large computational requirements involved. 

For example, an attacker with knowledge of the checking schedule may break into the 

system between these checking points and change the operating system or the IDS software 

itself, leaving the system in an insecure state.  

This work develops a novel way to overcome the problems of a traditional Integrity 

Checking Systems. Our approach is to use an independent auditor, i.e. a completely 

standalone and independent device to perform the integrity detection checking. 

More specifically, this work will be focused on implementing an integrity checking system 

using an ARM microcomputer plugged into the PCI bus. The auditor will run an Open 

Source version of Linux as well as an open source BIOS. This auditor uses the approaches 

previously discussed to check the integrity of the system, completely independent of both 

the host machine and the OS running in the host machine. 

In both approaches the auditor provides the system an “in depth” defense. This concept 

means that an all-powerful attacker (i.e. a supervisor with access to the machine, knowing 

every security device, program and password) with only the restriction of physical access to 

the machine will not be able to bypass the integrity checking system. 

Using the first approach, the device will create a secure database of computed hashes, 

which will be periodically compared against the new computed hashes in the machine. An 

auditor devoted to this task could do the checking more often than normal machine could. 

This checking will be at random times with a certain mean and variance. At every check 
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time, after the comparison is done, the auditor will keep a copy in non-volatile storage of 

important log-files and data. These log-files cannot be secured using this approach, as they 

change frequently. But keeping a copy of them in a known secure state will allow us to 

know, in the event of an alert, information about the state of the machine before the attack, 

creating a “black box” of your computer. A discussion of the importance of secure audit 

logs can be found in [10]. 

In the second approach, the public keys to perform the integrity checking are stored in the 

auditor. The auditor could make active requests to verify signed files, or act passively by 

"sniffing" the bus and recreating the file-system in parallel, avoiding execution of signed 

files in real time. In this approach, not only is the corruption of the system prevented, but 

only files from trusted parties will be allowed in the machine. 

Although this work is based on implementing an integrity checking system using an out-of-

band approach, inside the auditor other IDS can be implemented. As an example, the 

auditor could sniff the traffic passing by the Ethernet card and alert the machine of possible 

network attacks.  

In the next sections some terms used throughout this document are described.  

 

1.1  Embedded Systems 

 

Personal computers are widely used. They are usually composed of a hard disk, some kind 

of video device (such a monitor), and other hardware and Input/Output devices. These 

computers are designed to perform a variety of tasks. 

However, there are other devices, called embedded systems, which are also composed of 

hardware and software, but are designed to accomplish a specific function. For example, an 
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embedded system, composed by a microprocessor and a LCD screen could be used in a 

plane for sending, receiving and processing positioning signals from the control tower. The 

software and the hardware in that device are devoted only to this purpose. Examples of 

embedded systems applications would be VCR, alarm clocks and video-gaming devices. 

The function of embedded systems can usually be imitated by replacing the embedded 

system with an equivalent device completely built in hardware, without any kind of 

processor or software. However, embedded system using multi-purpose processors are 

easier to build, and are cheaper. In fact, as the availability of cheaper tiny processors have 

risen in the market, the number of embedded systems has also risen. As an example, PDAs 

are a new application of embedded system, which is having a great impact in the market.  

Software is usually designed to be operated by personal computers. A piece of software, 

designed for one personal computer, will also run in any other personal computer if they 

share the same architecture and OS. In embedded systems, software is created for a specific 

platform and hardware, and is unlikely to work in any other platform. In fact, the software 

in an embedded application is usually highly specific to the hardware to keep low cost. 

There are several key hardware components common to most embedded systems.  

The main component is the microprocessor. Typical target processors are Intel x86, 

Motoral 68k, MIPS R3xxx, R4xx0, Intel strongARM, etc. In order to run software, the 

embedded system should have some kind of storage.  It has some temporary cheap volatile 

storage (i.e. RAM) and some non-volatile storage to keep the software and data (i.e. flash 

storage) 

Software for embedded systems is usually built using development tools in a general-

purpose computer, such as an Intel x86 running WindowsTM. The created software is then 
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“translated” to the embedded architecture using a cross-compiler, a tool that compiles 

software in one architecture for use in other architectures. 

Usually, the term Host refers to the computer, in which the software is developed, while the 

term Target is the embedded system in which the software is ran. Details of the Target, 

Host and the cross-compiler used to build the embedded coprocessor can be found in 

chapter 4, Designing the System. A list of common targets and hosts can be found in fig.1.1 

 

 

 

 

Figure 1.1 Common Host platforms and Target Processors 

Host Platforms Target Processors 
DEC Alpha Digital Unix 
HP 9000/700 HP-UX 
IBM Power PC AIX 
IBM RS6000 AIX 
SGI IRIS IRIX 
Sun SPARC Solaris 
X86 Windows95/98/NT 
X86 Red Hat Linux 

AMD/Intel x86 (32-bit only) 
Fujitsu SPARClite 
Hitachi H8/300, H8300H, H8/S 
Hitachi SH 
IBM/Motorola PowerPC 
Intel i960 
MIPS R3xxx, R4xx0 
Mitsubishi d10V, M32R/D 
Motorola 68k 
Sun SPARC, MicroSPARC 
Toshiba TX39 

 

 Although software for embedded system was monolithic in the past, new, more complex 

embedded systems with higher needs, will benefit from the inclusion of an Operating 

System. These embedded operating systems will be discussed in the next section, along 

with the ARM architecture (used by the embedded coprocessor of this work) and some 

aspects of the memory devices. 
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The Acorn’s ARM architecture is a RISC load/store architecture designed to provide very 

high code density suitable for embedded applications, which require low power 

consumption. The base architecture does not provide any hardware support for floating-

point arithmetic. However, it could be implemented using software emulators of the 

floating-point unit. 

The first ARM chip was released on April 26 1985, making ARM the first RISC 

commercial processor. Since then, there have been different revisions, creating four 

different version of the chip. The last, ARM v4 is the one used by our platform. More 

information about the ARM architecture can be found in [3]. 

1.1.1 Memory 

 

Different types of memory are available for the use in embedded systems. Memory devices 

are usually divided into two main types: RAM (Random-access) and ROM (read-only). 

This is a very rough division, however, as there are subtypes of each and hybrids of both 

memory types. RAM devices can be used to read and write, but the storage is volatile. If 

there is no power, the data stored in the RAM will disappear. In a ROM device, the data 

stored at each memory location can be read, but not written using software. It is possible, 

however to erase and rewrite data using hardware. 

See figure 1.2 for an overview of the different types of memory and subdivisions. 

Figure 1.2 Common memory types in embedded systems 
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The Embedded processor used for the project utilizes Flash memory as the non-volatile 

storage. Flash memories are hybrids between ROM and RAM devices. There are low cost, 

non-volatile, and fast to read but very slow to write. Nevertheless, it is possible to write to 

them using software. A file-system can even be created using flash-memory. These 

advantages actually make flash-memories the most popular type of non-volatile memory 

for embedded systems. 

 

1.2 Hard disks 

 

In most computers the hard disk is the principal mass storage system.  It stores the data files 

and programs, and delivers the data to the CPU when it is needed. Hard disks usually differ 

in diverse parameters from each other, from technology to speed. However, they share 

some common ground. Hard disks are rigid platters, composed of a substrate and a 

magnetic medium. The base must be non-magnetic. Both sides of each platter are coated 
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with a magnetic medium called a thin-film medium. This stores data in magnetic patterns, 

with each platter capable of storing a billion or so bits per square inch (bpsi) of platter 

surface. This data is organized into larger "chunks" tipically to allow for easier and faster 

access to information. Each platter has two heads, one on the top of the platter and one on 

the bottom, so a hard disk with three platters (normally) has six surfaces and six total heads. 

Each platter has its information recorded in concentric circles called tracks. Each track is 

further broken down into smaller pieces called sectors, each of which holds 512 bytes of 

information. Nowadays, hard disks are not just dumb devices to store information. 

Embedded in the device is usually an intelligent controller, which handles the requests 

from the operating system. For example, the IDE interface is one type of controller. A 

further explanation of this specific type of controller can be found in chapter 5. The 

operating system uses a File System as a way to organize files and directories on the hard 

disk. The File-system is dependant on the operating system. Linux, for example, uses the 

ext2 file-system by default, while the desktop version of Windows uses the FAT-32 file-

system.  

 

1.3 PCI bus 

 

The PCI (Peripheral component Interconnect) is a complete set of specifications defining 

how different peripheral should interact. A implementation of these specifications is the 

PCI bus. The PCI Local Bus is a high performance bus for interconnecting chips, 

expansion boards, and processor/memory subsystems. Devices attached to the PCI bus 

(PCI devices) are automatically configured at boot time by the system. A bus number, a 

device number and a function number identify each PCI device.  Each system could have 
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up to 256 buses; each bus up to 32 devices and each device can handle up to eight different 

functions. Usually systems have at least two PCI buses. These buses are connected to each 

other using bridges, a special type of interface designed for this task. The PCI devices share 

address space, permitting communication between each other. Every device also has 

specific configuration registers that can be accessed by the system to configure or read 

information about the device. 

 

1.4 Operating Systems 

 

Any machine could have a huge monolithic program that completes all the tasks of the 

systems. While this approach is sometime used in embedded systems, it is usually not 

feasible for more demanding systems where it is desired to complete several tasks or 

continually develop new software. An Operating System is a program that completes 

several objectives, including: 

• Provides Abstractions: Hardware has low-level physical resources with 

complicated, idiosyncratic interfaces. An Operating System provides abstractions, 

which present clean interfaces. The objective is to make the computer easier to 

program and provide better communication with hardware devices.  

• Provides Standard Interfaces: This allows portability between different systems.  

• Mediates Resource Usage: This allows multiple processes to share resources fairly, 

efficiently, safely and securely. A common example is the capability of processes to 

share one processor, allowing the possibility of more than one task running in the 

same processor at the same time. 
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The OS is composed of different programs. The core of the Operating System is called the 

Kernel. When the system boots, the kernel is usually loaded into memory from a non-

volatile storage device. As the other programs of the Operating system are not crucial to its 

work, in this document the terms OS and kernel will be used interchangeably.    

 There are essential differences between Operating Systems and embedded operating 

systems. Current Operating systems consist of huge pieces of code, devoted mainly to 

simplify the usage of the computer making it more attractive to the common user. In the 

other hand, embedded operating systems are not user oriented, but committed to a precise 

work. Embedded Operating systems are typically small, as they do not require user 

interfaces, or the need to communicate with certain hardware devices, such monitors and 

keyboards. Furthermore, the storage devices are usually reduced, so the OS size is strongly 

limited by the lack of storage. 

There are several Operating Systems for embedded systems. Some examples are ecos [21], 

Linux [22], windows CE [23] and many others. Actually, anyone could create his own OS. 

After all, an Operating system is just another piece of software.  

The system in this study uses a port of the Operating System Linux for Arm processors. 

Chapter 4 will discuss why embedded Linux was the chosen Operating system.  

1.4.1 Linux Operating System 

 

Linus Torvalds, a Finish student of computer science, created Linux in 1991. It was first 

developed as an Operating System for IBM compatible personal computers based on an 

Intel 80386. But there has been subsequent development on this OS. As the source code 
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was placed in the public domain, freely available, a group of LINUX activists formed to 

develop the operating system. This movement is growing daily a more reliable OS. 

Linux is based on the well-known commercial Unix operating system. Looking in the 

documentation from the last Linux release we can read a self-description of Linux. [24] 

Linux is a Unix clone written from scratch by Linus Torvalds with 

assistance from a loosely-knit team of hackers across the Net. It aims 

towards POSIX compliance.  

It has all the features you would expect in a modern fully-fledged Unix, 

including true multitasking, virtual memory, shared libraries, demand 

loading, shared copy-on-write executables, proper memory management 

and TCP/IP networking.  

It is distributed under the GNU General Public License.  

Linux has some advantages when compared with other operating systems. The first big 

advantage is that Linux is free. In fact, Linux is distributed under the GPL (General Public 

License). The GPL not only allow the freely use of Linux, but also allows the user to 

modify the source code and redistribute the new version, as long as the new code will be 

distributed under the GPL, this ensures that the new versions of Linux will also be free. 

Other benefits of Linux are its high compatibility with other OS and the strong technical 

support available through the Linux community. An extensive literature is available 

concerning Linux [6]. 

Linux attempts to make a clear division between Hardware dependent and Independent 

source code. Therefore Linux is highly portable and greatly suitable for embedded 
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applications. From the primary x86 platform Linux has been ported to ARM, alpha, m68k, 

mips, ppc, sparc, sparc64 and s390. 

In the system of this study ARM Linux is used, a successful port of Linux to the ARM 

processor based machines, which was developed mainly by Russel King with contributions 

from other sources [25]. 

 

1.5 Interrupts. Polled mode vs. Interrupt mode 

 

An interrupt is an event that alters the sequence of instructions executed by a processor. 

These events correspond to electrical signals generated by hardware circuits. Usually we 

differentiate between synchronous interrupts, generated by the CPU after terminating an 

instruction, and asynchronous interrupts, generated by other hardware devices at arbitrary 

time. The synchronous interrupts are usually called exceptions, while the term interrupt is 

usually used to refer to asynchronous interrupts. For example, the keyboard will generate 

an interrupt every keystroke, while the CPU will raise an exception if an abnormal situation 

occur. The interrupt requests by I/O devices are called IRQ.   

Interrupts are used because operations with peripherals are usually unpredictable. These 

events could be a packet arriving at the system or pressing a key in the keyboard. These 

events are usually stored in a status register, and the operating register should react when 

this status register is updated. The two techniques available to monitor I/O (Input/Output) 

operations are polling mode and interrupt mode. 

In polling mode the CPU will check every certain time the status of the status register. This 

method is simple, but it wastes a huge amount of time, as the CPU should perform the task 

of verifying the register. Usually, I/O operations are implemented using interrupts. When 
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an event occurs, the device will signal the CPU to raise an electrical interrupt. The 

operating system will have a table with a pointer to the code to call when this certain 

interrupt is called. The action to the event signaled by the interrupt will be handled by this 

code. 

Using a common comparison, the polling mode is comparable to staring to a door with the 

door open while waiting for a guest.  The interrupt mode could be compared to closing the 

door and waiting for a knock in the door to open it.  

 

1.6 Hashing, Public key Cryptography and digital signatures 

 

At the beginning of the chapter the terms Hash Functions and file signing were introduced. 

Here they will be further developed. 

As previously stated a hash function is a mathematical function that computes a digest of 

the message, transforming it from an arbitrary length to a message of fixed length. The 

principal attributes of a secure hashing function are the following: 

• It is a one-way process. It is mathematically infeasible to reconstruct the original 

data from the hashed result. 

• Given a hashed message, it should be mathematically infeasible to find a message 

with the same given digest  

• The hashed result is unpredictable. Given a source of data, is extremely difficult to 

find another set of data sharing the same hash result. This property follows from the 

two previous properties. 
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Hashing functions are usually used in computer security to check the integrity of data by 

computing the hash function of the message and comparing it with a certain known 

previously hashed digest. Notice that hash function provides only integrity. 

The following are some popular hash functions  

MD2 and MD5, created by Ron Rivest, which produces a message digest of 128 bits 

SHA, proposed by the NIST (National Institute of Standards and Technology), producing a 

message digest of 160 bits. 

Digital signatures add authentication and non-repudiation to an integrity checking system. 

It is possible to check if a file has been signed from a certain party. Therefore, this party 

cannot claim that they are not the creators of this file. Because encrypting the entire 

message will be computationally expensive, a digest (hash) of the file is first computed. 

File signing involves using a public key cryptosystem. Although there are different public 

key algorithms, they share one general concept. There are always two components used for 

operation in the input data. One of the components is the private key, while the other is 

named public key. If we encrypt the input data using the public key, encrypting the 

ciphered data again using the private key will retrieve the original data. 

Figure 1.3: Asymmetric Cryptography 
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 Hence one key can be used to invert the operation performed by the other.  

The public key is then distributed and made available in secure databases, which will match 

the identity of the user with his/her public key. 

The user then can encrypt a message using his/her own private key. To know if a certain 

user signed the file, the key can be retrieved from the secure database and used to decrypt 

the digest. Next the digest of the message will be computed and compared against the 

decrypt signature. If they are different, either the file has been corrupted or another user has 

encrypted the digest. If there is no change, then it is certain that that particular user signed 

the file. 

Figure 1.4 Digital Signatures 



 17 

 

 While public key cryptography is a powerful tool, the operations involved require an 

extensive use of the processor and are usually slow. Signing a complete message would 

computationally expensive. Usually, not the entire message is encrypted, but rather the 

hash of the message is. As the computed hash is always the same size, no matter the size of 

the plaintext, encrypting using asymmetric operations is much easier. 

Figure 1.5: Digital Signatures Using Hashing Functions 

 

1.7 Organization 
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This work is organized in seven chapters. The first chapter is this introduction, defining 

some terms that will aid in the comprehension of material in following chapters. 

The second chapter is an overview of the intrusion detection systems. Even if the 

implementation of the system in this project only covers a Integrity Verification System, 

reviewing the different possibilities and aspects of the Intrusion Detection Systems will 

give a background for further development, as well for a better understanding of the 

system. 

 In the third chapter the implementation of an Out of Band verification system will be 

explained, which will include details of the system as well as a review of other approaches 

which use the same system in a theoretical way. 

The next chapter is devoted to the technical review of the implemented system, completed 

in appendix A with the code of the BIOS, applications and Kernel patches.  

Chapter number five includes graphics and data on the performance and accuracy of the 

system, along with a discussion of the results. 

In the sixth chapter the overall conclusion of the work will be discussed, and the future 

work regarding implementing Out of Band intrusion detection systems. 

 In the final chapter I will include the bibliography used for writing this work. 
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C h a p t e r  2  

2 Overview on Intrusion Detection Systems 

 

Diverse security mechanisms are usually implemented in the system to prevent 

unauthorized access. However, as new security flaws appear, completely preventing them 

is usually unfeasible. But once the intrusion has occurred, it is possible to detect it and to 

minimize the damage to the system using special agents.  

Intrusion detections systems (IDS) attempt to detect these intruders breaking into your 

system or a legitimate user misusing system resources 

 

2.1 Definitions 

 

In this section the common concepts used trough this and the following chapters referring 

to the intrusion detection systems are described. Most of the definitions are extracted from 

[28] and [1]. 

2.1.1 Trust 

 

The technical definition of trust in the computer security field is the degree of confidence in 

which the system behaves as expected. The different levels of trust match the levels of 

confidence in the system. Following this definition, a non trusted system is one in which no 

warranties about its behavior can be stated. The formal concept of trust is complex and 

often neglected. Usually, system or agents (for example, operating systems) are granted the 
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“trusted” state without any warranty of their behavior. A more extensive development of 

the concept of trust can be found in [27]  

2.1.2 Threat 

 

A threat is any event with the potential to harm any essential element of the system. These 

types of threats can be of diverse nature, and countless. Fire in the building where the 

computer is hosted is as much a threat as computer virus is (and possibly more harmful). 

Hence we can divide threats into intentional (viruses, hackers) or incidental (fire, floods).  

We describe an intrusion or attack as any set of intentional actions that attempts to create a 

threat.  

From the originator point of view we can divide the attacks in: 

• External attacks, performed by an intruder foreign to the system 

• Internal attacks, performed by authorized users. 

Types of penetration include [27] 

Espionage, including any disclosure of sensitive data or leakage of information  

Denial of Service, including the disruption of any service provided by essential resource 

elements and the destruction of essential resource elements. 

The term penetration is used to refer to a successful intrusion.  

2.1.3 Vulnerability 

 

Vulnerabilities are flaws in the system that exposes it to penetration. Usually, in an 

intrusion, the attacker will try to exploit the vulnerabilities of the system to gain 

unauthorized privileges. These weaknesses of the system could have their origin in flawed 

software or hardware. In that case, they are called technical vulnerabilities.  However, the 
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vulnerabilities sometimes occur as a result of a deficient configuration or/and management 

of the system. These are called management or procedural vulnerabilities. 

2.1.4 Security Policy 

 

A security policy documents the producers or models necessary to accomplish security 

requirements. Security policies can be divided into: 

• Procedural security policies, which refer to a document outlining the security goals 

and the resources to be used in order to achieve these goals, and 

• Formal security policy, which consists in a mathematical model containing the 

states and operations to move from one state to another and the constraints of when 

and how these operations may exist. 

  

2.2 Importance of Intrusion Detection systems 

 

To avoid penetrations, systems usually base their security in tools such as firewalls, access 

control mechanisms and others. 

But incidents like the Internet Worm [30] or recent events, such the apparition of malicious 

worms like “I love you” [31] or Code Red [32], have shown that today’s systems are far 

from being secure against possible penetrations. 

It could be argued that better, more secure systems with better tools and stronger 

cryptography will stop these threats from occurring. However, the complete prevention of 

intrusion is unrealistic in the present days: 

A system completely secure and free of vulnerabilities requires software to be bug free. To 

accomplish this the systems administrators should revise the code for every program to be 
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run in the system. This is obviously infeasible and almost impossible for most systems, as 

several software packages and operating systems do not make their source code available.  

Security tools rely on the competence of the user. Even the best crypto-system can be 

broken if the password has been written on a piece of paper. Also, an insider could abuse 

his or her privileges. Humans are usually the weakest link in a secure system. 

Strict, secure mechanisms reduce the efficiency of the system. For example, longer 

passwords will delay the access of the user and better, more sophisticated encryption 

algorithms will make programs slower. 

In [17] evidence is shown that even well known vulnerabilities with available patches are 

exploited for a long time after the patch is released. 

Hence, even in extraordinarily secure systems, penetrations could arise. If a penetration has 

occurred, a secure system should be able to react, detecting the penetration as soon as 

possible and storing audit data about the penetration, to prevent such an attack in the future 

and to trace the attacker. IDSs, however, usually do not perform any reactive measures to 

an attack.  

2.3 Goal for an Intrusion Detection System 

 

The Intrusion Detection Systems should try to achieve the following goals: 

• It must be difficult to bypass 

• It should run continually without human supervision. The system must be reliable 

enough to allow it to run in the background of the system being observed.  

• It must be fault tolerant in the sense that it must be resilient to unexpected fatalities, 

as systems crashes  
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• It must resist subversion. The system most be capable to detect malicious 

corruption of its own code 

• It must impose minimal overhead on the system.  

• It must be easily tailored to the system in question. Every system has a different 

usage pattern, and the defense mechanism should adapt easily to these patterns.   

The inaccuracy of an Intrusion detection system could be classified in false positives, false 

negatives and subversion errors. 

False positives are legitimate access or actions in the system categorized by the Intrusion 

Detection system as intrusions. False positives should be minimized, as a large number of 

false positives obscure the task of separating real attacks from lawful actions. In such a 

scenario, the maintainer of the system could overlook an attacks, even if it has been 

detected due to the large amount of detected attacks. 

More serious are the false negatives. In this case, an intrusion is not detected, and labeled as 

a normal behavior of the system. Causes of false negative are diverse, but usually new 

attacks not catalogued bypass systems based on pattern matching. This issue will be further 

discussed in the following section. 

Subversion errors are similar to false negatives. An intruder with certain knowledge of the 

intrusion detection system will take advantage of known flaws of the intrusion detection 

system itself or can change the behavior of the intrusion detection system to allow unlawful 

action to be labeled as legitimate. 

 

2.4 Types of Intrusion Detection systems 
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Using the academic model of intrusion detection systems we can divide them in two 

models 

Anomaly detection model: The intrusion detection systems following this model detect 

intrusions by looking for abnormal activities in the system [33]. 

 Some approaches using this model are: 

Statistical approaches where profiles of user behaviors are generated and compared against 

the actual behavior of the user. 

Predictive pattern generation, where the intrusion detection system attempts to predict the 

future using occurred events, and triggers an alarm if known events occur or if events are 

matched as an intrusion. 

Some examples of IDS using the anomaly detection model are [35] and [39].  

The use of this approach usually leads to a large number of false positives but can prevent 

attacks not previously identified.  

Misuse detection model: Intrusion detection systems following this model detect intrusions 

by matching activities against patterns of known intrusion techniques (signatures) or 

system vulnerabilities [18]. 

Approaches using this model include: 

• Keystroke monitoring, matching attack patterns using pressed keys. 

• State transition analysis, where the system is modeled as state transition diagrams, 

and certain state are labeled as “SAFE” and other as “UNSAFE” [36]. 

Approaches using this model are [37] and [38]. 

The use of this approach leads to high accuracy ratios but is unable to detect novel attacks. 
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2.5 Integrity Verification Systems 

 

Another, more subtle type of Intrusion Detection System are integrity checkers. Integrity 

checkers will not detect the intruder even in the case of a successful penetration. The 

purpose of using integrity checkers as an Intrusion Detection System is to detect change in 

the files-systems after the penetration. Motives for altering the files-systems are diverse. 

The intruder could try to cover his or her tracks by removing the logs or place Trojan 

horses in the system to regain access in the future. Integrity checkers will detect these 

attempts and trigger alerts. 

It could be argued that the use of integrity checkers is not necessary if we use other types of 

Intrusion Detection Systems, which detect an intruder even if the file-system is not changed 

during the penetration. However, research performed by DARPA in 1998 showed that even 

the best IDS had detection rates below 70% [40]. Usually, the undetected intrusions were 

novel attacks, which could lead to supervisor access to the system.  The same research in 

1999 showed similar numbers; the detection ratio was still below the 70th percentile [41].   

This data shows that intrusion detection systems are likely to fail detecting novel attacks. 

Using anomaly detection systems may prevent and raise this ratio, but state-of-the-art 

anomaly detection systems are not suitable for large commercial networks because they 

provide a large number of false positives. 

Integrity file checkers give the system another layer of security, allowing systems to avoid 

being left in a completely unreliable state after a penetration has been discover. 

Integrity file checkers can be divided into two main categories, 

2.5.1 Database integrity checkers  
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Database integrity checkers create a unique identifier for every file to be checked. This 

identifier, usually some type of hash function, is then stored in a secure database. At certain 

intervals, the identifier will be recreated and compared against the stored identifier. If the 

identifiers differ, an alert will be triggered. The saved record usually contains other 

significant file information such as length, time of last modification and the owner of the 

file. 

The stored identifier should be computationally simple to generate but impractical to 

reverse. Also, it should be impractical to create a random file with the same identifier as 

another file. As was discussed in the introduction, these goals can be achieved using one-

way-functions, also called hash-functions. The hash functions to be used in the database 

depend on a balance between performance and security.  

Usually, along with the database where the identifiers are stored, a policy file exists where 

the files to be monitored are declared. The policy file is necessary because not all files in 

the system can be monitored. Files that change frequently, such as log files and database 

cannot be checked, as this will lead to numerous false positives. This situation is 

undesirable as the task of separating the false positives from the real alarms will be 

complex. Typically the configuration file also gives some parameters, which specify 

constraints to the file to be monitored. This allows the administrator of the system to check 

other types of files such as files that only increase or decrease in size, or change contents 

but not file attributes. 

A an example, fig2.1 shows a policy file from Tripwire which is an implementation of a 

database integrity file checker 

Figure 2.1 Sample Security Policy of Tripwire 

DIRECTORY=/home/thesis/tripwiretest; 
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TWPOL=/etc/tripwire; 
TWDB=/var/lib/tripwire; 
SIG_MED      =66; 
 
 
#Policy, three files. One of data, one invariable binary, one growingonly 
 
( 
 
  rulename = "Thesis", 
  severity = $(SIG_MED), 
  emailto = root@127.0.0.1 
 
) 
 
{ 
 
$(DIRECTORY)/binary           ->$(ReadOnly); 
$(DIRECTORY)/data             ->$(Dynamic); 
$(DIRECTORY)/growing          ->$(Growing); 
 
}  

 

Using a database to insure integrity checking may lead to the following problems: 

• The verification of the integrity is conducted at certain intervals, usually every day; 

by computing the digest for a large number of files the integrity checker will stall 

the computer for some time.  

• Between checking periods an attacker could change the file-system, reverting the 

changes before the integrity checker performs the verification. 

• The databases, configuration files and policy file should be strongly protected, 

possibly in special types of storage.  

• If files are changed or new files are added or deleted, the database has to be 

updated. In large systems, this could be difficult to administrate. Moreover, as the 

database should be stored in a special storage, updating it may not be 

straightforward.  
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• Policy files and configuration files will need to be carefully created and updated. 

The efficiency of this integrity checking system is strongly linked to the accuracy 

used when creating the policy file and the competence of the system administrator 

to handle the reports.  

Examples of integrity checkers using the database approach are Tripwire [13], [14] and 

AIDE [20].  

In conclusion, database integrity systems are highly portable and configurable, but they are 

not real-time integrity detection methods and are difficult to administrate. 

2.5.2 File signing 

 

The second category is to use cryptographically signed files to ensure the integrity of the 

files. This is accomplished by using digital signatures as introduced in the first chapter. 

When the file is compiled and linked, a digest of the message, such MD5 or SHA, is 

computed. Then the message digest is encrypted using the creator’s private key. The digest 

is embedded into the file being signed, and the header of the file is changed accordingly. 

Hence, we will have a signed version of the file.  

Another way to perform file signing is to store the file signature in the filesystem itself. File 

system usually store information about the file in data structures. For example, in the case 

of the Linux file systems, these data structures are called inodes. Each file has an inode and 

is identified by an inode number (i-number) in the file system where it resides. inodes 

provide important information on files such as user and group ownership, access mode 

(read, write, execute permissions) and type. In novel file sytems these data structures 

include a pointer to a metadata section, which includes unspecified information about the 

file. This metadata section could be used to store the digital signature. 
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The signed file can then be distributed to different machines which supports this feature. 

Before the file is opened, the kernel first will check that the file is correctly signed, using 

the creator’s private key. If the checking is correct, we can assume that the file has not been 

corrupted and has been created by the owner. If not, either the file is a forgery, or has been 

corrupted. 

The principle is very simple but the implementation of this integrity method is fairly 

complex. Several problem arise: 

• This method is only to be used on files that are not supposed to change. In fact, this 

method is mainly designed to ensure the integrity of binaries and possibly other 

sensitive files such as shared libraries. 

• This method is not portable between architectures. Different architectures use 

different file-system types and compilers. Embedding the signature and patching 

the kernel to verify the signature will change from operating system to operating 

system. 

• Files usually are not statically linked. Files such as these, called dynamically linked 

executables, use some functions declared in libraries that are common to the 

system. Hence, not only the integrity of the file should be checked, but also the 

integrity of the shared library. This issue is discussed in [12]. 

• As the file has to be checked before the execution, the execution time of a signed 

file will be longer than a normal file. This performance penalty can be decreased 

using caches or buffers, as discussed in [12] and [16]. 
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To conclude, this system detects corrupted or forged files in real-time, but is not portable 

and cannot be used in general files or configured to meet some requirements. The use of 

this approach may involve a performance penalty in the execution of files. 
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C h a p t e r  3  

3 Out of band verification system 

 

In the previous chapter Integrity Verification Systems were analyzed, revealing that the use 

of Integrity Verification System will add another layer of security to the system. 

However, all Integrity Verification Systems share a common problem. To complete their 

tasks, Integrity Verification Systems must trust the operating system to operate as 

anticipated. This assumption is not always valid, as this file integrity system checkers are 

designed to detect an intruder that possibly has already gained supervisor privileges. With 

such privileges he or she may be able to change the behavior of the operating system, hence 

leading the system to false negatives. 

To overcome this problem the inspection of the system’s integrity should be performed by 

completely trusted, non-corruptible software even in the event of a successful intrusion. 

This goal could be achieved using an out-of-band system as the auditor. In the following 

sections this system will be described. 

 

3.1 Motivation 

 

A security system that relies on the operating system of a penetrated system cannot be 

trusted.  In fact, this problem is well known. In an article, which appeared in Phrack 

Magazine, signed by “Halflife” [25], a loadable kernel module was used to bypass the 

Tripwire integrity checking system. Since then, several tools for corrupting the operating 

system have been developed including Knark, famous for being used in the Ramen worm 
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[42]. This section will explain how these attacks works. The attacks explained are under 

Unix-like operating system. However, other operating systems are also vulnerable to these 

kinds of attacks as will be explained at the end of this section. 

Before discussing the actual attack, some background is needed. In the next two sections 

the operating system calls and the feature of dynamically changing the kernel using Kernel 

Modules in Unix-like system will be discussed. 

3.1.1 System Calls 

 

User processes and the kernel run in different modes. The CPU itself enforces this policy. 

Every modern processor has at least two modes of operations, and in some cases, as in the 

x86, more than two. Every mode of operation has some actions allowed and others not 

permitted.  In the case of the Unix operating system, only two levels are used, the higher, 

and the lower. The lower lever is called user space or protected mode. In this mode the user 

has restricted access to the memory and hardware devices. The higher level is called Kernel 

space or supervisor mode. In this mode the process has unrestricted access to memory and 

devices. User-space applications are run in protected mode, while the kernel execute in 

supervisor mode. The only way an application can access the sources restricted by the 

protected mode is through the Kernel.  
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Figure 3.1 Linux Kernel Space structure. From [45] 

 

If an application requests a service from the kernel, such as asking for more memory or 

accessing a hardware device, system calls are used to access the second mode of operation. 

The only way to access kernel space is by using system calls or when a hardware interrupt 

arrives to the system. In order to use system call the process will fill certain registers with 

appropriate values, include the type of system call to access, and call a defined interrupt, 

dependent on the operating system and architecture. For example, in the Intel architecture 

the user process will call interrupt 0x80 if the operating system is Linux or interrupt 0x21 if 

the operating system is Windows. Then, depending on the system call used, the process 

will jump to a certain location of the kernel. The location in Linux is stored in a table 

(sys_call_table), where the addresses of the functions in the kernel to be called are stored. 
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The kernel will look at this table and jump to the corresponding address in the kernel. After 

it returns from the call the kernel will do some system checks and continue in the address 

of the user space calling process. 

3.1.2 Loadable Kernel Modules 

 

A feature of the Unix-like Operating Systems is the possibility of dynamically changing 

parts of the kernel. This is performed using LKM (Loadable Kernel Modules). When 

requested, the module code resides in the kernel's address space and executes entirely 

within the context of the kernel.  Command lines functions can be used to load and unload 

the modules. In Linux these commands are insmod, for loading, and rmmod, for unloading. 

Also, they can be loaded automatically by a daemon. A daemon is a program that runs 

continuously and exists for the purpose of handling periodic service requests that a 

computer system expects to receive. In the Linux case, the daemon used is named kerneld. 

As part of the kernel, only users with administrator privileges can load and unload 

modules. However, kernel modules, as they are part of the kernel, when used with 

malicious purposes can be a powerful tool. There are several legitimate uses for kernel 

modules. The most important use is to implement device drivers. Statically linking in the 

Kernel image all the devices drivers could result in a Kernel which is unnecessarily large if 

these devices are used only at specific times, such as USB devices or PCMCIA cards. 

These drivers should be loaded only when the device is to be used. LKM can also be used 

for testing purposes or for supporting file-systems not normally used. 

Loadable Kernel Modules are part of the kernel, and should be programmed and compiled 

as such. Loadable Kernel Modules cannot use user space libraries. Also, LKM should be 

programmed with extra care to avoid bugs. A bug in a user space program will probably 
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lead to the termination of the process, while a bug in a Loadable Kernel Module could lead 

to an unstable system and possibly to a system crash. 

3.1.3 Attacks in kernel space 

 

An Integrity Verification System which trusts the operating system can be deceived using 

attacks that involves changing the kernel. These attacks will be explored in the Linux 

Operating System. Similar attacks could be launched in other Unix like Operating Systems 

and are briefly discussed at the end of this section. 

The straightforward way of changing the kernel is to replace the kernel binary itself. The 

kernel binary is usually placed in the /boot partition, so an attacker could compile his/her 

own version of the kernel and replace the binary. This is usually infeasible, for two main 

reasons 

In secure systems, the kernel binary is usually stored in a physically non-writable partition, 

making it impossible to replace the file 

To recompile the kernel with exactly the same option is  complex. The administrator will 

probably notice a new Kernel Image, as the behavior of the system will possibly be faulty. 

Another possibility is using LKM. An attacker will not have to recompile the complete 

kernel, just code a LKM, which will be loaded at boot time and will be part of the kernel.  

Once the intruder has gained access to the kernel space, several attacks could be launched 

against the system to avoid being detected. The most obvious attack is to redirect the 

system calls. Any program in user space such as integrity checkers will use system calls to 

access kernel space, even for very simple operation like reading a file. By redirecting the 

system call to a “rogue” system call the attacker can hide the existence of any file in the 

system even from integrity checkers. Redirecting a system using kernel modules is simple. 
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As we have seen, the addresses to jump to when a system call is loaded are stored in a 

table. When the module is initialized, the kernel module will use code similar to the 

following 

 

original_syscall=sys_call_table[SYS_sycalltohack] 
sys_call_table[SYS_syscalltohack]=hacked_syscall    
 

Where hacked_syscall is a pointer to the function used to replace the system call.  

In the function hacked_syscall the attacker will call the original syscall and the change the 

results. As an example 

res=(*original_syscall)(parameters) 
//change res to mislead the system 
return(res) 
 

 

 

Figure 3.2 Redirecting system calls 
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 Several Rootkits, a set of tools that an attacker uses to mask an intrusion and/or regain 

access later, take advantage of kernel modules. These tools are available on the web using 

these techniques. An example is Knark. 

Other operating systems, such as Windows NT, are also target for these attacks. Malicious 

patches to the system or corrupted drivers can be loaded to corrupt the kernel. These tools 

are also available on the web.  

Some efforts have been made to counter the loading of kernel modules. Most of these 

techniques, as [43] in Windows NT, operate by avoiding modules or drivers to be loaded. 

However, an intruder could just reboot the machine. This will delay the call to these 

programs. The attacker will then load the malicious kernel modules or drivers before these 

tools begin performing the checks. Another method to bypass this type of security measure 

is to directly access the physical memory and load the module.   

 

3.2 Concepts, terminology and assumptions 

 

In the present and the following sections the terms host processor or host system will be use 

to define the machine or set of machines to be audited or verified for correct functioning. 

The term “host” is slightly inaccurate, as the implementation of the independent auditors 

could be diverse. However, as in this work, the out-of-band verification system is 

implemented as an embedded coprocessor, and the term host processor will be used in 

order to avoid confusions. Other terms, such as host operating system, will be used 

throughout the text to refer to components of the system to be verified. 

System A will be called out-of-band auditor or independent auditor of System B if it 

accomplishes the following set of properties 
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i. Unrestricted access: Machine A must have unrestricted access to the internal 

devices of machine B to be verified or needed for the verification, including 

peripherals, hard disks and interrupts. Notice, however, that unrestricted write 

access to the internal components of the host system could lead to an unstable 

system. Hence, the independent auditor should use the write access to the 

components of the system only in cases of a high-risk alert to avoid further damage 

to the system. 

ii. Secure transactions: The channel used by the independent auditor to retrieve the 

data should be a secure channel. A secure channel is a channel, which cannot be 

eavesdropped or intercepted. 

iii. Inaccessibility: Machine B must not have access in any way to the internal 

components of machine A, including memory and internal interrupts. 

iv. Continuity: Machine A must run immediately after machine B has setup the internal 

devices and is in a known trusted state. After this moment, Machine A must run 

continuously, independently of the behavior of machine B. Notice that power 

failures or hardware reboots should be the only way to restart machine A and must 

be labeled as high risk level alerts. 

v. Transparency: The access to the internal devices should be transparent to the host 

system. However, concurrent access to the devices will probably occur. In these 

situations, the consequences to the host system should be minimized. 

vi. Verifiable software: All the code running in machine A must be trusted and 

verifiable. This, at least, implies that all running software in machine A must have 
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the source code available. This includes the firmware, operating system and user 

space programs in machine A.  

vii. Non-volatile Memory: Machine A must be capable of retaining a record of the 

alerts even in the event of a power failure or reboot. Hence, machine A should have 

some sort of non-volatile storage to record sensitive data.  

viii. Physically secure: Finally, machine A should be physically secure. Mechanisms to 

accomplish this requirement are discussed in section ensuring the physical security 

of the system.  

Further discussion in this chapter assumes that the independent auditor meets some or all 

these requirements.  

 

3.3 Modes of operation 

 

The independent auditor could be in three different states. The normal state is the normal 

mode of operation, and is dependent on the method used for the integrity checking. The 

second state is the alarm state. This state will be discussed in the section 3.4, and is reached 

if an alarm is triggered in the normal state. Another mode of operation, which can be 

accessed only at boot time, is the management mode. This mode is only accessible through 

a set of secure mechanism, and will allow the administrator to change parameters in the 

secure coprocessor. This mode is in a secure state, as can only be accesed physically and an 

independent auditor is physically secure by definition. 

The normal mode of operation could follow different methods to ensure the integrity of the 

data in the host machine. Three methods will be discussed. The first two methods, using a 
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database and file signing come directly from the approaches of Integrity Verification 

System. The third approach involves using the independent auditor in a promiscuous mode. 

All these modes of operations assume that the host operating system is in a trusted state 

when the first checking takes place. Using the independent auditor in an untrusted state will 

not add any security to the system. 

3.3.1 Objectives 

 

The modes of operation described in the previous section should achieve the following 

objectives 

• Check the integrity of certain files without trusting any software outside the 

independent auditor 

• Whenever an alarm occurs, the independent auditor should be able to send an alert 

to the administrator 

• An attacker with complete knowledge and access to the system, whose only 

restriction is physical access to the hardware of the independent auditor, will not be 

able to bypass the integrity system 

• The integrity system should be able to work in real-time. If this is not possible, the 

independent auditor should be able to store sensitive data of the machine before the 

attack. 

3.3.2 Independent auditor in database mode 

 

The concept of using a database for integrity checkers was described in the previous 

chapter. In this section this concept will be reviewed in order to be used with an 

independent auditor. 
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In this case the independent auditor will have a policy file, which is uploaded into the 

system in management mode, where the files to be checked will be declared along with the 

parameters of the checking.  

The files will be accessed every certain period of time, and the set of actions stated by the 

policy file will occur. The independent auditor will retrieve information of the file, possibly 

computing the hash function. This information will then be checked against the locally 

stored information inside the auditor. If the information matches, the new information will 

be stored in the nonvolatile storage. If they do not match, the alarm state is triggered.  

Figure 3.3 Database mode of operation 

 

Using an independent auditor in database mode has several advantages as compared to its 

counterpart managed by the host operating system. 

The auditor handles the computational work. Hence, stronger hash functions can be used to 

ensure the integrity of the database without decreasing the performance of the host system 



 42 

The system is not vulnerable to subversion errors. An attacker gaining access to the host 

machine will not be able to corrupt the auditor, as by definition, the machine B cannot have 

access to any data from the auditor 

The system should be able to securely log files and other sensitive data in the case of an 

alert. The methods and necessity for secure audit logs will be discussed in depth in section 

3.5 

Although all the computational work is done in the auditor, accessing the file-system could 

still decrease the performance of the host computer. A mechanism is needed to make the 

access from the auditor to the drive transparent. 

As the security checking should still be scheduled at certain times, an all-powerful attacker 

could corrupt the file-system between checking and revert to the initial state just before the 

next inspection. Such an attack would remain unnoticed by the independent auditor. To 

overcome this attack, the schedule time for the integrity checking should be randomized. In 

management mode the administrator will set parameters such the average and the variance 

between inspections.  Using this mechanism, even and all powerful attacker will be unable 

to retrieve information about the next checking, even with administrator access to the host 

machine and knowledge of the last checking time. 

 

 

 

 

Figure 3.4 Randomized scheme vs. nonrandomized scheme 
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3.3.3 Independent auditor in file signing mode 

 

The file-signing mode using an independent auditor differs from its counterpart using the 

host operating system. In this case, is not possible to achieve a real-time approach, as the 

auditor will not be able to tell which files are going to be executed without communicating 

with the host processor. Such communication is possible using different techniques, for 

example, the auditor could poll a special file with information about the status of the 

operating system; These techniques rely on information provided by the host operating 

system, and should be avoided, or at least not trusted. However, hybrids methods could be 

used. 
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In file-signing mode the auditor will retrieve all the files in a given partition at every 

scheduled time. All the files in the given partition should be signed. Any corrupted or 

unsigned file will trigger an alarm. As in the case of the database mode, this checking 

should happen at random times.  

If the file signing is implemented using the metadata parameter of the file-sistem data 

structures, the independent auditor should match the file with the data structure and fetch 

the information stored in the metadata.  

 

Figure 3.5 Independent auditor in File Signing mode 

 

 

In the hybrid mode, the auditor will receive information about the host using a shared 

register (for example, mailbox registers). This could be easily achieved by using a kernel 

module in the operating system. This information could include new files in the system, 

files to be executed or shared libraries, to mention some. The auditor will react 
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consequently, checking the new files or the executed file. As appealing as this method 

could be, an attacker could just use another kernel module to send erroneous information to 

the auditor. Hence, the auditor should still verify the partition every scheduled time to 

ensure that the system has not been compromised. A possible attack could be to send 

erroneous information to stall the auditor (for example, fake the execution of a file every 

second) so the auditor will be busy attending these requests. To avoid this attack the 

scheduled verification should have priority against the information sent by the host 

operating system 

Another important issue is the key management. In this scheme, the auditor will have a 

public key stored, which can only be changed in management mode. The certificates used 

to sign the files will be stored in a special file in the partition where the signed files reside. 

This special file will be signed with the private key, which is in the possession of the 

administrator only. At boot time, the auditor will retrieve the certificates from this file 

using the public key. Two points to be noticed are: 

• Adding or revoking certificates will change the content of the special file.  

• The public key inside the auditor is not a secret. Retrieving the certificates will not 

give any advantage to the attacker. The only secret is the private key maintained by 

the administrator. 

As in the case of the database system, log files could be stored and retrieved in the case of 

an alert. This will be discussed in section 3.5 

3.3.4 Independent auditor in promiscuous mode 

 

In the previous section it has been stated that the auditor will not know when the host 

processor is executing a file. However, the auditor could infer actions of the host processor 
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by examining certain hardware component, for example interrupts or registers, in the 

peripherals.  

As in the previous section, the files to be audited should be signed. The auditor will be 

observing the behavior of the system, and if it infers that a file is being used, it will inspect 

it. 

For example, the auditor could be “listening” to the IDE interrupt controller. The IDE 

controller will raise an interrupt when a file is written, and a register will be updated. The 

auditor will “listen” to this interrupt, or poll the register to know what kind of action (read, 

write) the host processor is requesting.  

A read could be either an execution or a reading. From the point of view of the peripheral 

both actions are the same, requesting a file from the disk. Also, the request could be partial, 

as part or the entire file could be in the internal cache of the host system. This makes it 

difficult for the auditor to react to the knowledge of these actions. A write signal, on the 

other hand, is easier to detect. The auditor can deduce if it is a new write or change to an 

existing file. In the first case, the auditor should check the integrity of the file once the 

transmission has finished. In the second case, the auditor should trigger an alarm, as signed 

files should not be changed. 

 

3.4 Alerts 

 

In this section the alert mode will be described. Any alarm should change the auditor to 

alert mode. The reactions to an alarm depend on policy. The policy file regarding the alert 

should be created in management mode before starting to use the auditor. The policy file 

should match the type of alarms (reboot, corruption of a file, not signed file, etc) with an 
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alert. Although policy files could be implemented in different manners, in this section three 

possible type of alerts to an alarm will be discussed. 

The auditor could trigger physical alerts for critical security problems. Physical alarms are 

the ones that directly affect the hardware of the system or that trigger a device outside the 

system. This is possible as the auditor has access at least to the device to be audited, and 

hence can shut it down for example. This is an extreme solution, but for very sensitive 

systems such as military system, taking the chance of an intruder retrieving or corrupting 

data from the system could be unacceptable. Physical alerts have the obvious drawback of 

being the perfect target for Denial of Service attacks. However, if the intruder has arrived to 

a point where it could trigger this kind of alarms, this eventuality is a minor evil. 

Other physical alerts, which are not as severe, could be that of printing a message to the 

screen or sounding an audible alarm. 

The auditor could send the alerts through the network to an external trusted machine or 

system. These types of alerts are network alerts. A secure channel must exist between the 

auditor and the external trusted machine to avoid an eavesdropper to disrupt the 

communication or forge messages. If the channel used is not physically secure, or even is 

the same channel used by the audited system, a set of secure protocols should be used. That 

mechanisms may include cryptography to avoid eavesdroppers know sensitive data, and 

authentication mechanisms to ensure the data send by the auditor is not corrupted. The 

auditor should send data alerts even if there are no alarms to counter the attack of an 

intruder disrupting the channel. 
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3.5 Audit Logs 

 

The last set of actions is logging the alarms. Information about the alarm should be stored 

in the non-volatile storage device in the event of any alert.  

Using an independent auditor for integrity also opens the possibility of not only storing the 

information of the attack but information before the attack. This is useful in the modes 

where the auditor is not checking the system in real time, as it happens in the database 

approach. The auditor could log processes, measurements or events. The auditor stores 

these sensitive logs in a trusted state. The first checking is always assumed to be in a 

trusted state. Every checking without an alarm will ensure that the system remains in this 

trusted state. Hence, after the system audit took place, the system will store the sensitive 

data. In the next audit without an alarm, the auditor will update the data.  In the event of an 

alarm, the data before the system compromise took place will be preserved, allowing the 

supervisor to retrieve the logs before the attack took place, in a trusted state. The recorded 

file could be compared to the files to know if the attacker has tampered with the logs, and 

possibly information about the type of attack and identity of the intruder. A discussion of 

the importance of secure audit logs can be found in [11]. 

The following figure represents the logging procedure in the independent auditor. 

 

Figure 3.6 Audit Logs procedure 
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C h a p t e r  4  

 

4 Implementation of an independent auditor 

 

In this chapter a possible implementation of an independent auditor using an Intel ebsa-285 

will be discussed. We will demonstrate that this implementation pursues the properties 

declared in chapter 3 for independent auditors.  

In the first section the hardware used for the implementation will be introduced. Then we 

will demonstrate that this hardware is suitable for being an independent auditor. Next, the 

mode of operation of the independent auditor will be explained. In section 4.3 the software 

used for implementing the independent auditor with the EBSA-285 will be presented. 

Finally, the operation of the EBSA-285 as an independent auditor will be discussed. 

 

4.1 Hardware description 

 

The information of this section is extracted from the reference manuals [47], [48] and [48] 

The hardware used to build the independent auditor is the StrongARM EBSA-285 

Evaluation Board. An SA-110 ARM processor, Intel 21285 system core logic, diverse 

types of memory, different buses and several I/O devices compose the board. In this 

chapter the board will be referred as the EBSA-285, the processor of the EBSA-285 as the 

SA-110, and the core logic as the 21285 core logic. The system’s main processor will be 

referred to as the host processor, or just as the host. The devices plugged into the PCI bus 

will be referred to as PCI cards or as PCI devices. 
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The board has 3 LEDS that can be used for diverse purposes, a switch with 16 positions 

used to choose the memory Image in the flash memory (discussed in section 4.x), a 9-way 

D-type serial port, a JTAG connector, used for debugging purposes and a port for a 

possible daughter board.  

Figure 4.1 Structure of the EBSA-285, from [47] 

 

4.1.1 The SA-110 processor 

 

The SA-110 processor is an implementation of the ARM Version 4 architecture. The SA-

110 is a 32-bit general-purpose microprocessor with a 16 Kbytes instruction cache, a 16 

Kbytes write-back data cache, a 128 bytes write buffer, and a memory-management unit 

(MMU).   The processor can function either with 32 bit or 26 bit instruction sets. The 

processor has 16 core clock frequencies ranging from 88.3 MHz to 287 MHz. The power 

required by  the processor is 2 volts. 
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4.1.2 The 21285 Core Logic for SA-110 Microprocessor 

 

The Intel Semiconductor’s 21285 is a single-chip interface between the SA-110 processor, 

an SDRAM memory, flash memory and the PCI bus. Some interesting features of this 

interface are programmable timers, Doorbell register, which could be used by the host 

processor or any PCI device to communicate with the EBSA-285, I2O message unit, also 

used by the EBSA-285 to communicate with the host processor (as will be seen in section) 

an X-bus, power management support, DMA controllers and DAC support. It supports both 

5-V and 3.3 V signaling environment.  

 

4.1.3 Operation modes of the EBSA-285 board 

 

The EBSA-285 is a single-board computer in the form of a PCI plug-in card.   

This board is designed to function in one of two different modes. The first mode is the host 

bridge mode. A PCI based architecture has a multi-master capability, allowing in PCI 

master to access any other PCI master/target. One device in the PCI is responsible to for 

generating a software-driven initialization and to configure all devices after power up or 

reset. This PCI device is named the Host Bridge. In this mode of operation the EBSA-285 

acts as the host bridge of the system and the SA-110 as the main processor. As host bridge 

the EBSA-285 should provide PCI configuration cycle for the devices plugged in the PCI 

bus, bus arbitration, PCI clock generation, interrupt controller, reset generation and pull-

ups on some bus signals. To be used in this mode, the EBSA-285 should be plugged into a 

special slot of the motherboard (the “system” or “Host” slot) and some jumpers should be 
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configured. This mode of operation is not suitable for building an independent auditor, and 

hence will not be used. 

The second mode of operation, called add-in card mode is the mode to be used in the 

implementation of an independent auditor. In this mode of operation the motherboard or 

PCI backplane provides bus arbitration, interrupt controller and pull-ups for the system. 

The SA-110 is a coprocessor of the system in this configuration. The Host CPU is in charge 

of configuring the PCI devices. The EBSA-285 appears to the host system as a PCI device. 

The SA-110 is able to access the system memory as PCI bus master. The SA-110 may 

allow the host CPU to have a window of the memory in the EBSA-285 mapped in the PCI 

memory.  

There is another mode of operation, called blank programming mode, which maps the local 

Flash memory into the PCI bus to be rewrote. This mode of operation will be discussed in 

the next section. 

4.1.4 Memory specifications 

 

The EBSA-285 includes support for both volatile and non-volatile storage. The non-

volatile storage is supplied in the form of flash ROM memory, which has been explained in 

the first chapter. This flash memory is divided in four 1 MB flash ROMS. These 8 bytes 

wide flash memories are arranged to provide a 32-bit path for the SA-110. Each flash ROM 

is subdivided into 64 KB blocks of memory. Because of the arrangement of the memory to 

provide a 32-byte path, the whole flash memory can be treated as sixteen 256 KB blocks. If 

the firmware that is shipped with the EBSA-285 is used, any of these blocks can be 

selected to be executed using the 16-position switch. The independent auditor will use its 

own firmware, so this switch will not be used. The blocks are contiguous, so they can be 
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either flashed as a whole or separately. To program the flash ROM the SA-110 must not be 

executing from the Flash ROM, because the flash programming requires a well-defined 

series of read and writes to the flash and code fetches will disrupt this sequence. The 21285 

allows the flash to be reprogrammed from the PCI interface while the SA-110 is running. 

However the EBSA-285 has a special mechanism to reprogram the flash called “Blank 

programming mode” or “Blank ROM mode”. In this mode the EBSA-285 allocates the 

resources and maps the ROM in the PCI bus, which allows the host processor to write on it. 

 Also the EBSA-285 can be configured to accommodate an 8-bit ROM emulator. 

As a volatile storage the EBSA-285 uses SDRAM memory. The SDRAM memory can be 

attached to two 168-pin 3.3.V SDRAM DIMMSs. The EBSA-285 is shipped with a 16 MB 

DIMM.  

 

4.1.5 Buses 

 

There are seven main buses in the EBSA-285, which includes: CPU Address bus, CPU 

Data Bus, Buffered Data Bus, X-bus, Buffered X-bus Data Bus, SDRAM address bus and 

buffered SDRAM address bus. Both he CPU address bus and the data bus connect to the 

SA-110 processor, the 21285 system controller and the flash ROM. The SA-110 uses this 

bus to drive addresses from SDRAM, flash ROM and 21285. The X-bus is a sub-set of the 

CPU address bus, which is always enabled. It is a low speed bus used to access I/O devices. 

The SDRAM address bus is permanently enable and is used to drive the information from 

and to the SDRAM DIMM sockets. 

4.1.6 PCI interface 
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The PCI bus in the EBSA-285 is a full PCI local Bus Specification, Revision 2.1, 32 bit, 33 

MHz compliant interface. The bus is provided to allow the EBSA-285 to be used as an add-

in card. Signaling levels used are 3.3 Volts although the interface is 5 Volts tolerant. In 

central function the PCI interface is capable of using a number of reserved pins to provide 

four sets of interrupts, requests and grant pins required. In add-in mode, however, these 

pins are reserved and the PCI card is only able to use a pin to raise an interrupt with which 

it may communicate with the host processor. As PCI bus master, the SA-110 is capable to 

read the entire PCI memory through the PCI interface. 

 

4.2 The EBSA-285 as an independent auditor 

 

In this chapter the suitability of the EBSA-285 to act as an independent auditor will be 

discussed. In section 3.2 we stated the properties to be accomplished by an independent 

auditor. As an assumption the Host machine should be physically secure. The term 

physically secure is used to describe a machine which internals part could not be tampered 

with by an attacker. The attacker, however, could have access to the peripherals attached to 

the host, including keyboard and monitor. Hence, the physical security property will be 

declared as an assumption. 

• The unrestricted access property is accomplished using the PCI interface. In our 

case, the EBSA-285 must have unrestricted access to the hard disk data and to the 

Ethernet controller. The host processor configures at boot time all the PCI devices. 

The EBSA-285 has access to the entire PCI Bus, hence is capable to read the 

register and data from all PCI plugged in the same bus. Notice that if the EBSA-285 

is plugged in a slot using a different bus than the ebsa-285, the access will not be 
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possible and the EBSA-285 will not be capable to act as an independent auditor of 

the host processor. The EBSA-285 is not able to “listen” to the interrupts raised by 

the different devices in the PCI-bus. These interrupts, however are not imperative to 

the auditing, as a polled method could be used to read and write data to the 

peripherals. 

• The channel used to retrieve the information from the peripherals is the PCI bus. 

This channel is secure as it is an internal part of the computer and is supposed to be 

secure. Hence, the EBSA-285 accomplishes the secure transactions property. 

• The inaccessibility property is met if the bootloader (see section 4.3.2) acts in 

standalone mode. In this mode the EBSA-285 does not map its meory (either ROM 

or RAM) in the PCI bus, allowing the host processor to access only mailbox 

registers and PCI registers. Accessing this register does not influence the EBSA-

285, hence not breaking the inaccessibility property.    

• Once the EBSA-285 starts auditing only a power failure or reset of the host 

machine will stop it from functioning, and will be labeled as alarms. The EBSA-

285 will begin functioning after the host machine have set up all the internal 

peripherals. In our case, the EBSA-285 will begin functioning before this happens, 

so the EBSA-285 should have a mechanism to stall its booting until all the 

peripherals have been configured. This will be discussed in section 4.3.2. Therefore 

the continuity property is proven. 

• The EBSA-285 can access directly the register of the PCI devices, so accessing the 

data could be performed by the EBSA-285 without supervision of the host 

operating system using polling, hence satisfying the transparency property. Notice, 
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however, that some mechanism should be implemented to avoid concurrent writes 

to the register, which would lead to an unstable system. This will be discussed in 

the next chapter. 

• The software running in the EBSA-285 is open source. It is composed by a 

minimum bootloader, the Linux operating system and open source software. The 

code is hence verifiable. To be trusted, the code should come from a trusted party. 

To ensure that the code is from the claimed party, architecture similar to the 

SEBOS architecture could be used [46]. However, the implications of trust go 

beyond the purpose of this work. In our case, we suppose the Linux operating 

system as trusted and verified. The remaining code has been verified, therefore is 

also trusted. 

• In chapter 4.1.5 the different types of memory in the EBSA-285 were stated. The 

EBSA-285 can use the flash ROM to store the alarms and logs. The ROM cannot 

be reprogrammed if the program executed from the flash ROM. To avoid this 

problem, the bootloader copies the root file-system and the operating system to the 

RAM memory before executing it, freeing the flash ROM.  

 

4.3 Software in the ebsa-285 

 

The EBSA-285 is composed of a bootloader, a port for the ARM architecture of the Linux 

operating system and user level programs stored in a Ramdisk (a file system resident in the 

RAM memory). For building the EBSA-285 some drivers created for the host were used, in 

order to create interaction between the host processor and the EBSA-285. In the following 
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sections these different component will be discussed. All the software in this section can be 

downloaded from [50]. 

4.3.1 The toolchain 

 

As we have seen in the first chapter, the term host system was used to define the place were 

the applications for the embedded systems or target were created. In order to avoid 

confusion with the terminology, the machine where the applications are cross-compiled for 

the co-auditor will be called the builder system. The embedded system will be still called 

the target system or just the embedded system. A toolchain is a set of application that 

allows a builder system that does not share the same architecture with the embedded 

system to cross-compile the programs to the architecture of the embedded system. 

In our case, our builder system is an Intel Pentium 3, and our Target system is the EBSA-

285. So a toolchain to crosscompile from the x86 architecture (the name of the architecture 

of the Intel Pentium 3 processor) to the ARM architecture (architecture of the SA-110 

processor) is needed. 

The toolchain consists of a number of components. The main one is the compiler itself, 

gcc, which can be native to the host or a cross-compiler. This is supported by binutils, a set 

of tools for manipulating binaries. Also, the Kernel header will be needed to cross-compile 

the Linux Kernel. To cross-compile user space programs the C library glibc will be needed. 

Building the toolchain is a difficult exercise, as all the tools should match in version, and 

compiling a compiler is definitely a complex process. At the present time, however, several 

pre-built toolchains are available through the Web. These toolchains are usually suitable for 

most of the cases. Regretfully, the Linux Kernel version used for the project (2.2.9) is too 

old to be cross-compiled using these pre-built toolchains. The components used to build 
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our toolchain are binutils version 2..9.1.0.25 and egcs version 1.1.2. The version of the C 

library glibc is 2.1.2. 

A step-by-step guide on how to build the toolchain can be found at [50]. 

4.3.2 The bootloader 

 

The bootloader is the first code executed by a machine after a reset or power off. This code 

usually set up basic registers and configures the memory and peripherals of the system. The 

bootloader in the EBSA-285 is stored in the flash ROM memory. Mark Van Doesburg 

created the first version of the bootlader for the pcimsg utilities, which will be described in 

chapter [x]. From this bootloader, we created two different bootloaders. The first 

bootloader is used for debugging and testing purposes, and is used in combination with the 

device driver for the host described in the next section. The second bootloader is used by 

the EBSA-285 in its normal mode of operation. The bootloader is divided into assembler 

code and C code. Both versions can be found in Apendix A. Both bootladers share the first 

part of code, that follows this steps: 

• Store the Vectors where the exceptions will go into the ROM memory. This is done 

because after reset the 21285 decode the flash ROM in two locations; its normal 

base address 0x41000000 and 0. After reset, the machine will begin executing at 

memory address 0. After the first writing operation, this alias is disabled, so the 

vectors should be transferred to the ROM. For the exacts steps, refer to Section 4.1 

in [49]. 

• Configure the X-bus and SA-110 control status registers. For the exacts steps, refer 

to Section  4.4 [49]. 

• Turn on the LEDS. 
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• Configure the memory. To configure the memory several steps should be taken. 

The main steps are to configure the 21285 memory registers and to configure the 

mode registers in the SDRAM arrays. For exact steps refer to section 4.7 of  [49]. 

• Copy the first part of the bootloader to RAM and jump to it 

• The next part is written in C. In this part both bootloaders differ. The first 

bootloader, used for testing purpose, will map the SDRAM memory of the 21285 in 

PCI memory. Then we would be able to pass the Kernel and Ramdisk using the 

host processor. This feature is very interesting, as flashing the ROM is time 

consuming, and involves changing jumpers in the EBSA-285 to set the blank 

programming mode and using the software to flash the memory. Of course, this 

bootlader is not suitable to be used with the EBSA-285 as an independent auditor, 

as it will allow the host processor to access to the EBSA-285 memory, conflicting 

with the inaccessibility property. The bootloder will follow these steps 

• Map all the RAM in PCI space. 

• Disable the access from the PCI to the ROM. 

• Request an interrupt line to the PCI. 

• Set the INITIALIZATION_COMPLETE bit in the SA-110 control register. This 

allows the host processor to read the information of the host such as Vendor and 

device ID. This bit should be set or initialized, as the host processor will attempt to 

access the EBSA-285 PCI configuration registers as part of the power up self-test 

(POST). If this bit is not set, the host processor will retry. If the bit is never set, the 

host processor will retry forever, thus hanging the system. 

• Light the green led. This is useful to know if the bootloader has reached this point. 
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• Test a mailbox register to continue. The mailbox is initialized to zero. The 

bootloader will stall here until this mailbox is set to 1. The host processor using the 

PCI bus can always access the mailbox registers. The host processor is in charge of 

changing this mailbox register to continue execution. Notice that accessing the 

mailbox registers does not break the inaccessibility property, as changing this 

registers does not interfere with the operation of the EBSA-285. 

• Turn off the green LED to ensure the mailbox register was correctly updated by the 

host. 

• Jump to the location where the operating system is stored. 

This bootloader is complemented with the drivers for the host described in the next section. 

This bootloader will be called the wait-for-host bootloader. 

The bootloader used for the EBSA-285 as an independent auditor continues as follows 

• Disable access to the SDRAM from the PCI bus to ensure the inaccessibility 

property. 

• Disable access to the ROM from the PCI bus, to ensure the inaccessibility property. 

• Light the green LED. 

• Set the INITIALIZATION_COMPLETE bit in the SA-110 control register to 1.  

• Copy the Kernel Image from a configured address in ROM to a configured address 

in RAM. 

• Copy the Ramdisk from a configured address in ROM to a configured address in 

RAM. 

• Copy a configuration file from an address in ROM to an address in RAM. This 

configuration file is used to pass parameters to the Kernel. The configuration file is 
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not strictly necessary, as these parameters could be hard coded in the Kernel Image. 

However, as these parameters change frequently, it is useful for debugging 

purposes to change these parameters without recompiling the Kernel. 

• Switch off the green LED. 

• Jump to the position of RAM where the Kernel is stored. Continue execution there. 

This bootloader will be called the standalone bootloader. 

The bootloaders are simple. Almost all the hard work of configuring the PCI, set up the 

serial BUS, etc is performed by the Linux Kernel. 

4.3.3 Device drivers 

 

In the Linux operating system all the peripherals are treated as a normal files. Every device 

is matched with a special file in the /dev/ directory. These files are associated with a 

MAJOR number and a MINOR number as well as with the type of device, which could be 

either a character device, block device or network device. The MAJOR and MINOR 

numbers are registered in the kernel and are used to access the device driver in kernel 

associated with the device. Usually the MAJOR number relates to the driver to be chosen, 

and the device driver uses the MINOR to differentiate between two devices of the same 

time such as two IDE hard disks usually. 

The device driver is kernel code, which could be either implemented using Kernel modules, 

discussed in the previous chapter, or embedding the code in the Kernel. Device driver make  

the access to a peripheral transparent. The user only writes or reads using the special file in 

/dev/, and the device driver will write or read to the specific peripheral. Some peripherals, 

however, uses other mechanisms that cannot be abstracted using read and write calls. For 

example, changing the baud rate in a modem will not be possible using reads and writes. A 
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user space program could access these mechanisms using the ioctl system call. The ioctl 

system call will call the special file, and ask for a special request. As an example, in the 

modem case would be to change the baud rate from 9600 to 15600. This request will be 

handled by the device driver, which will access the peripheral, perform the request and 

return the result to the calling program. 

The classes of peripherals handled by the device drivers could be divided in three classes, 

namely character devices, block devices and network interfaces. A character device is one 

that could be acceded using a stream of bytes. Examples of character devices are the 

console or the serial port. The only difference between this devices and a normal file is that 

moving back and forth in the device could not be allowed. 

The second class is block devices. Usually, these types of devices correspond to storage 

devices such as hard disks, which can host a file-system. The reads and write calls in this 

case are composed by chunks of data instead of bytes, making the transfer more complex.  

Network interfaces are in charge of sending and receiving data packets and are driven by 

the network subsystem of the kernel. In this case, the device driver is not matched with a 

file in the file system as happens with both the block and character device drivers. The way 

to access these devices is to assign a unique name to them. For example, eth0 is used for 

the Ethernet card. The way of communicate with this class of peripherals differ greatly with 

the methods used in the char and block drivers. In this case special functions to receive and 

send packets are called. 

Two device drivers were used in the development of this projects.  

4.3.3.1 Arm new 

The first device driver, written as a kernel module, is named arm_new and is a character 

device driver. This device driver is intended to be used only with the wait-for-host 
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bootloader, and it provides the possibility to send the configuration file, the Kernel Image 

and the ramdisk to the EBSA-285 from the host processor. This driver is a development of 

a driver created by Mark Van Doesburg for the pcimsg utilities. This driver basically sends 

the Kernel, Ramdisk and configuration file to the PCI mapped memory of the EBSA-285. 

Three files in the /dev/ structure of the host file-system are created. These files are 

/dev/arm0, /dev/arm0_config and /dev/arm0_initrd. These three files share the same 

MAJOR number, in this case 42, and have different MINOR numbers. When a user level 

process writes to any of these files, the device driver is called, as arm_new is registered in 

the kernel with the MAJOR number 42. Then, it uses the MINOR number to know if the 

user is writing to /dev/arm0, /dev/arm0_config or /dev/arm0_initrd. If the user is writing 

to the second one, the module will write the data sent to the PCI position of memory 

schedule to handle the Kernel configuration file for the EBSA_285. If the third file is 

wrote, then the device driver will write the PCI mapped SDRAM EBSA-285 memory 

scheduled to handle the Ramdisk. Finally, if the first file is wrote, then data will be sent to 

the position of memory in the EBSA-285 scheduled to handle the Kernel Image, and the 

mailbox register used by the bootloader will be updated to one, continuing the booting 

process in the EBSA-285. 

As an example, if we have our configuration file stored in /home/arm/ebsa285/config.file, 

 the Ramdisk stored in  

/home/arm/ebsa285/ramdisk  

and the Kernel Image stored in  

/home/arm/ebsa285/Image 

the following set of commands:  

cp /home/arm/ebsa285/config.file /dev/arm0_config 
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cp /home/arm/ebsa285/ramdisk /dev/arm0_initrd 
cp /home/arm/ebsa285/Imege /dev/arm0 
 
Will bring the EBSA-285 to initialization if the wait-for-host bootloader is used. Again, 

notice that this bootloader and utilities are only used for debugging purposed and do not 

follow the properties for independent auditors. 

4.3.3.2 Pcimsg utilities 

 The second device drivers to be discussed are the pcimsg utilities designed by Mark Van 

Doesburg. 

The pcimsg utilities are network drivers that should be installed in both the host computer 

and the EBSA-285. These drivers allow communicating with the EBSA-285 and the host 

computer in a networked fashion. The driver follows the directions 6.3 of [47] and uses the 

I2O (Input to output) message unit of the 21285. This message unit provides standardized 

message passing mechanisms between a host and the SA-110 using the PCI bus. The 

message unit is composed of four logical FIFOs (Firs In First Out queues), two inbound 

FIFOs and two Outbound FIFOs.  The inbound FIFOs manage the messages that are I/O 

requests from the host processor to the SA-110, while the outbound FIFOs are used to 

manage messages from the SA-110 to the host processor. The FIFOs are stored in 

SDRAM, so the I2O capabilities is only usable if at least part of the SDRAM memory is 

mapped in RAM. Four pointers administered in hardware maintain the FIFOs.  

The pcimsg encapsulates the message frame as if it were network packets in the link layer, 

using IP addresses. The driver will assign an IP address to the host processor and to the SA-

110, The sender will form the messages while the receiver will deencapsulate the messages 

and send the data to the network layer. Using these utilities it is possible, for example, to 

open a Network File Partition in the host processor readable by the EBSA-285. 
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4.3.4 Arm Kernel and ARM kernel patches 

 

The EBSA-285 will run the ARM port of the Linux operating system. This port is 

maintained By Russel King [25]. To be able to use the port first the regular Linux tree, 

downloadable from [24], should be patched. The process of patching is adding or removing 

features of code using the difference created by the diff Unix command between two kernel 

trees.  The patch used is available in the arm-linux-webpage [25]. In the case of the ebsa-

285, the Kernel used is the version 2.2.9, so the patch used is the one referring to this 

version However this patch does not support the ebsa-285 as a coprocessor. To add support 

to the ebsa-285 as a coprocessor, two more patches should be added to the Linux tree. The 

first one is created by Mark Van Doesburg, and includes the pcimsg utilities. The second 

patch is created specifically for this project, and adds the possibility for the EBSA-285 to 

acess the PCI bus memory, which is disabled by default in the regular kernel tree for the 

EBSA-285 as an add-in card. These patches can be downloaded from [50]. This patch also 

adds the possibility of add the parameters of the Ramdisk using the configuration file. Once 

the Kernel is patched, the Kernel should be cross-compiled using the toolchain.  

 

4.4 Operation of the EBSA-285 as an independent auditor 

 

The EBSA-285 can work in two main modes. The first mode is used for debugging 

purposes, and is called the wait-for-host mode. This mode is not suitable for use the EBSA-

285 as an independent auditor. In this mode, using the wait-for-host bootloader, the EBSA-

285 will wait until the components (Kernel, configuration file and Ramdisk) are uploaded 
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by the host using the arm_new module. Once at least the Kernel is uploaded, the EBSA-

285 will boot the Kernel. 

In the second mode of operation the EBSA-285 will act as an indepenedent auditor of the 

host processor. In our case, the independent auditor will audit a file-system stored in an 

IDE-hard disk. To do so, the bootloader will copy the Kernel Image, config file and 

Ramdisk from ROM, to RAM memory and boot from RAM. The three components must 

be first flashed in to the ROM memory using the tools described in section 4.1.4  

From here, the Linux Kernel gives support for the IDE device driver, and as the EBSA-285 

has access to the PCI memory, the data could be retrieved. However, as the IDE driver uses 

interrupts to make the transfer of data, the IDE device driver should be used in polled 

mode. Also, if both the host processor and the EBSA-285 are accessing at the same time to 

the IDE controller registers the file-system could be left in an instable state. The issues 

about the IDE driver and performance of the system will be discussed in the next chapter. 

In this case the EBSA-285 audits the host processor using file signatures. The EBSA-285 

will mount the partition where the signed files are stored and check these signatures at 

every random time scheduled.  

Using the pcimsg utilities the host could send information about the transactions in the host 

processor. As was discussed in the previous chapter, these methods should not be trusted, 

and only be used as a backup method. The host processor will send only information about 

the filesystem. The EBSA-285 will never send information about itself or alarms using this 

messaging system. 

Alarms could be sent using an Ethernet controlled if it is plugged in the same PCI bus as 

the EBSA-285. Alarms could also be sent using the serial port of the EBSA-285. Any 
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alarms or logs are stored in the ROM memory. A part of the ROM memory is reserved for 

that purpose. The ROM memory could be written as no programs are being executed from 

ROM.  
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C h a p t e r  5  

5 Checking the integrity of a IDE hard disk using the EBSA-285 as an independent 

auditor 

 

To accomplish the goal of insuring the integrity of the host processor the independent 

auditor should be able to read the its filesystem. In this filesystem, the files should be 

signed as discussed in chapter 3. In our case of study the filesystem is stored in an IDE hard 

disk. The host system is a Linux bpx, Redhat 7.1, Linux Kernel 2.2.10 and 2.4.2, using an 

Intel processor Pentium 3. The IDE hard disk is a FUJITSU MPE3136AH, holding a total 

of 10 Gbytes. The size of the partition where the files to be checked are stored is 23 Mb. 

5.1 The IDE controller 

 

An IDE (Intelligent Device Electronics) controller is an embedded controller in the hard 

disk, which perform the task of controlling the requests from the CPU. The IDE interface 

integrates both the controller and the drive itself in a single unit. The IDE interface can 

serve a maximum of two drives, one being the master and one being the slave. High 

performance IDE drives enable data transfer rates between drive and maim memory of up 

to 5 Mb/s. On average, however, transfer rates are usually of the order of 3 Mb/s. Higher 

transfer rates could be achieved other access methods, as DMA 

 

5.1.1 The IDE registers   
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The CPU is able to access the IDE interface by means of diverse data and control registers. 

This set of registers is usually called the AT task file. The AT task file is accessed by the 

CPU using ports ranging from 1f0h to 3f0h. The following table shows the AT task file 

Figure 5.1: The AT task file 

Register Address[bit] Width Write Read/Write 

data register 1f0h 16 R/W 

Error register 1f1h 8 R 

Precompensation 1f1h 8 W 

Error count 1f2h 8 R/W 

Sector number 1f3h 8 R/W 

Cylinder LSB 1f4h 8 R/W 

Cylinder MSB 1f5h 8 R/W 

Drive/head 1f6h 8 R/W 

Status register 1f7h 8 R 

Command register 1f7h 8 W 

Alternate status 
register 

3f6h 8 R 

Digital output 
register 

3f6h 8 W 

Drive address 3f7h 8 R 

 

The data register is used to transfer data between the main memory and the IDE controller. 

The data in this register is only valid if the the DRQ bit in the status register is set. 

The error register is a read-only register, which contains information about the last 

command issued to the IDE controller. 
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The precompensation register is only implemented for backward compatibility with an old 

implementation. 

The sector count register can be read and written by the CPU to define a sector to be read, 

written or verified.  

The sector number register specifies the start sector for carrying out a command with disk 

access. The register contents are updated according to the last executed command, pointing 

always to the last proceed sector. 

The MSB and LSB cylinder registers contains the MSB (Most significant byte) and LSB 

(Least significant byte) cylinder to be accessed. Two registers are used because the cylinder 

number is 10 bits long, thus accessing a maximum of 1023 cylinder. However some IDE 

driver are capable to use the full 2 bytes, thus allowing the access of 65535 cylinders. 

The drive/head register is used to determine the drive and head to be accessed in the 

request. 

The status register contains information about the active command. The CPU cannot write 

to this register. The controller updates the register every command, or if an error occurs. In 

this register exists a BSY (BUSY) bit indicating that the driver is currently executing a 

command. If BSY is set, no registers can be accessed except the digital output register.  

The command register is used to pass commands from the CPU to the IDE controller. The 

execution of the command starts immediately after the command byte has been written into 

the register. Therefore, all the data involving the command should be passed before writing 

to this register. 

Using the digital output register the IDE controller can be set to reset all the drives. Also, 

these interrupts are used to set the interrupts in the IDE controller. Using this register the 
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interrupts issued by the IDE controlled can be masked. In this state the CPU may only 

supervise the controller by polling.  

 

5.1.2 IDE Command phases 

 

The execution of the commands in an IDE interface are carried out in three phases: 

• Command phase: The CPU prepares the parameter registers and passes the 

command code to start the execution. 

• Data phase: For commands involving disk access, the drive position the heads and 

transfers the data between hard disk and CPU 

• Result phase: The controller provides information regarding the executed command 

and issues a hardware interrupt via IRQ14 

The CPU writes and reads data using the 16 bits register, and not using DMA (Direct 

Memory Access). 

In data exchange (read and write commands) the controller uses IRQ 14 to synchronize 

CPU and controller. 

• Read sector: The controller enables IRQ 14 when the CPU is able to read a sector. 

In this case the IDE controller does not issue an interrupt at the beginning of the 

result phase, thus the number of hardware interrupts is the same as the number of 

read sectors. 

• Write sector: The sectors are transferred from CPU to the hard disk immediately 

after writing in the command register. The controller activates IRQ14 only at the 

beginning of the result phase, hence the number of interrupts coincides with the 

number of written sectors. 
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5.1.3 The Linux IDE device driver 

 

In Linux the IDE device driver is a block device driver. A general IDE driver, stored in 

linux/drivers/block/ide.c, and a specific IDE hard disk driver, stored in 

/linux/drivers/block/ide_disk.c compose it. 

When a process requests a file stored in the hard disk, the operating system will search for 

it first in the internal page cache. The page cache stores the most recently accessed data. If 

the data is not stored in the page cache, then the operating system will send a request to the 

IDE controller. In the IDE hard disk, the data could be stored in the cache or in the hard 

disk. The data in the Hard disk cache or in the disk is transparent for the operating system 

device driver, but the request will be served much faster if the data is in the hard disk 

cache. 

The EBSA-285 is not able to “listen” to the interrupts sent by the IDE controller. So we 

should examine a read performed by the IDE driver, an change it to behave in a polled 

mode. 

The first step in a normal read request to the hard disk is to set up the registers. The digital 

output register is set to normal operation using interrupts. Then the IDE driver will fill the 

register with the sector, cylinder and head or side of the data to be accessed. Then, it will 

write the type of command in the command register to be performed by the IDE controller. 

After this, the device driver will set an interrupt handler. The operating system will invoke 

this interrupt handler if the interrupt of the hard disk raises an interrupt. However, and 

expiration handler will get invoked if a certain time expires. In the IDE driver, this time is 

controlled by the constant declared in the IDE driver header (ide.h) WAIT_CMD. This 

constant is set to 10 seconds by default.  
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As we have seen, the EBSA-285 is not able to listen to the IRQ 14 raised by the IDE 

controller when the data is ready to be retrieved. However, we can use expiration handler to 

retrieve the data.  

This methods works, however it does not give any kind of insurance for transparency to the 

host processor. If both the host processor and the EBSA-285 try to access the hard disk, a 

collision will occur, and both will retry the transmission. As the host processor is faster, it 

will regain control of the IDE controller, and the EBSA-285 will stall until the host 

processor finish the transaction. However, if we set the WAIT_CMD too low, both the 

EBSA-285 and the host could interleave operation, leading to a deadlock, in which both 

machines are waiting for the IDE-controlled to change the status of the control register. 

The following table shows the performance of the Host processor using different values of 

WAIT_CMD. The value HZ is the number of ticks in one second. The benchmark used is 

hdparm. In the test, the EBSA-285 was running hdparm with direct access to the disk. This 

leads to the worst-case scenario; both the EBSA-285 and the host processor are reading 

large amounts of data from the hard disk. 

 

 

 

Figure 5.2: Access impact on the HOST of concurrent access  

HOST hard disk speed in concurrent access (in mbs second) 

WAIT_CMD in the EBSA-285  

No access HZ 0.8*HZ 0.7*HZ 0.6*HZ 

Disk access min 

(Mb/sec) 

3.31 2.81 2.59 2.49 2.34 



 75 

Disk average 

(Mb/sec) 

3.32 3.11 2.90 2.72 2.55 

Cache access 

(Mb/sec) 

68.45 68.45 68.45 68.45 68.45 

 

HOST hard disk speed in concurrent access (in mbs second) 

WAIT_CMD in the EBSA-285  

0.5*HZ 0.4*HZ 0.3*HZ 0.2*HZ 0.1*HZ 

Disk access min 

(Mb/sec) 

1.96 2.29 1.80 1.89 1.39 

Disk average (Mb/sec) 2.35 2.27 2.12 1.90 1.70 

Cache access 

(Mb/sec) 

68.45 68.45 68.45 68.45 68.45 

 

Lower values of WAIT_CMD could lead to a deadlock. 

An EBSA-285 will take 38 minutes to compute the MD5 hash function of a set of 10 MB 

files, with a WAIT_CMD of 0*2 HZ. This value is very high. However, this access method 

is far from optimal. The IDE driver should be changed to avoid collisions to ensure 

transparency. 

Another approach will be use the EBSA-285 using a polled driver for reads. This polled 

driver achieves a read speed of 2.4 MB/s. The EBSA-285 will take 4 seconds to compute 

the MD5 hash functions of a set of 10 MB files. However, if the host processor accessed 

the IDE driver, probably both machines will interleave while writing in the IDE registers. 

Hence, some locking procedure is necessary. 
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 These results demonstrate the capability of the EBSA-285 to perform IDE-reads even in a 

worst-case scenario and without changes in the IDE driver.  
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C h a p t e r  6  

6 Conclusions and future work 

 

The use of embedded auditors comes as a necessity after late successful attacks in kernel 

space. Software running in the machine cannot be trusted if such an attack has been 

performed, including security software. Using an embedded auditor will defeat these kinds 

of attacks. No other successful approach has been release to date, and probably never will 

be.  

Using embedded auditors opens a wide range of possibilities, creating a true out-of-band 

security. In this work we have restricted the study to Integrity Verification Systems. 

However, building intelligent embedded firewalls or other type of intrusion detection 

system will increase the security of the machine, releasing the host processor of the time 

consuming task of ensuring the security of the box. Moving the security tasks to an 

embedded processor will increase the overall performance of the machine as well as the 

security, ensuring the security task to be always in a trusted state. 

In this work the EBSA-285 as an independent auditor was presented, demonstrating that it 

can be used as an out-of-band Integrity Verification System. More development should be 

done with this specific machine, including changing the IDE drivers to increase 

performance and test the access to other storage devices, such as SCSI hard disks and 

removable USB devices. The EBSA-285 functions independently of the Host Operating 
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System. The tests in this work, however, were restricted to the Linux Operating System. 

Further tests should include other Operating systems such as Windows NT.  
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