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Abstract
Copilot is a coprocessor-based kernel integrity monitor for
commodity systems. Copilot is designed to detect mali-
cious modifications to a host’s kernel and has correctly de-
tected the presence of 12 real-world rootkits, each within
30 seconds of their installation with less than a 1% penalty
to the host’s performance. Copilot requires no modifica-
tions to the protected host’s software and can be expected
to operate correctly even when the host kernel is thoroughly
compromised – an advantage over traditional monitors de-
signed to run on the host itself.

1 Introduction

One of the fundamental goals of computer security is to
ensure the integrity of system resources. Because all user
applications rely on the integrity of the kernel and core sys-
tem utilities, the compromise of any one part of the system
can result in a complete lack of reliability in the system as
a whole. Particularly in the case of commodity operating
systems, the ability to place assurance on the numerous and
complex parts of the system is exceedingly difficult. The
most important pieces of this complex system reside in the
core of the kernel itself. While a variety of tools and archi-
tectures have been developed for the protection of kernel
integrity on commodity systems, most have a fundamental
flaw – they rely on some portion of kernel correctness to re-
main trustworthy themselves. In a world of increasingly so-
phisticated attackers, this assumption is frequently invalid.
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To address the growing need for integrity protection that
does not rely on kernel correctness, we designed Copilot –
a kernel integrity monitor that does not rely on the kernel
for access to main memory and requires no modifications
to the protected host’s software.

The ability to perform arbitrary checks on system mem-
ory provides Copilot with a mechanism to monitor for any
number of signs that the kernel is no longer operating in
a trustworthy manner. To exemplify the usefulness of this
approach, we present a prototype based on a PCI add-in
card that detects malicious modifications to Linux kernels.
This prototype extends previous work on auditing filesys-
tem changes [23, 24] and has been shown to successfully
perform its audit of system memory every 30 seconds with
less than a 1% penalty to system performance. This effi-
ciency, combined with the added assurance provided by the
Copilot architecture, results in a considerable advancement
in the protection of commodity operating system kernels
running on commodity hardware. In addition to the detec-
tion possibilities demonstrated by this prototype, the Copi-
lot architecture provides for future advancements including
partial restoration of changes due to malicious modifica-
tions and a more general scheme for configuration man-
agement.

As an example of Copilot’s integrity monitoring tech-
nique, we have tested and verified the prototype’s ability to
successfully detect the presence of twelve commonly-used,
publicly-known rootkits. Rootkits are collections of pro-
grams that enable attackers who have gained administra-
tive control of a host to modify that host’s software, usually
causing it to hide their presence from the host’s genuine ad-
ministrators. Every popular rootkit soon encourages the de-
velopment of a program designed to detect it; every new de-
tection program inspires rootkit authors to find better ways
to hide. But in this race, the rootkit designers have tradi-
tionally held the advantage: the most sophisticated rootk-
its modify the operating system kernel of the compromised
host to secretly work on behalf of the attacker. When an
attacker can arbitrarily change the functionality of the ker-



nel, no user program that runs on the system can be trusted
to produce correct results – including user programs for de-
tecting rootkits.

The Copilot monitor prototype is designed to monitor
the 2.4 and 2.6 series of Linux kernels. Copilot’s aim is
not to harden these kernels against compromise, but to de-
tect cases where an attacker applies a rootkit to an already-
compromised host kernel. Copilot is designed to be effec-
tive regardless of the reason for the initial compromise – be
it a software or configuration flaw or a human error involv-
ing a stolen administrative password.

The remainder of this section provides an overview of
the Copilot monitor prototype testbed. Section 2 contains
a brief survey of some existing kernel-modifying rootkits
and their behaviors, followed by a complimentary survey of
existing rootkit detection software in Section 3. Sections 4
through 6 discuss the implementation of the prototype. The
Copilot monitor depends upon a number of specific fea-
tures of the IBM PC-compatible PCI bus (Section 4) and
the Linux virtual memory subsystem (Section 5) in order
to operate. Section 6 describes how the Copilot monitor
uses these features to provide useful integrity monitoring
functionality.

Depending on the aggressiveness of its configuration, the
Copilot monitor’s examination of host RAM can lead to
some contention on the PCI bus and for access to main
memory. Section 7 presents the results of several bench-
marks examining the trade-off between reducing the aver-
age amount of time required by Copilot to detect a rootkit
and increasing the amount of PCI bus capacity Copilot
leaves for the host’s own applications.

Section 8 discusses the limitations of the present Copi-
lot monitor prototype, and Section 9 discusses possible av-
enues of future work. Section 10 compares the Copilot
monitor to other related work, and Section 11 presents our
conclusions.

The Copilot monitor prototype testbed consists of two
machines and a PCI add-in card, shown in figure 1. On the
left is the host – the machine that Copilot monitors for the
presence of rootkits. It contains the Copilot monitor on its
PCI add-in card. On the right is the admin station – the
machine from which an administrator can interact with the
Copilot monitor. The remainder of this document delib-
erately uses the words host, monitor, and admin station to
distinguish between these three entities. The phrase “host
kernel,” in particular, always refers to the kernel running
on the host – the machine that Copilot monitors. All ma-
chines run versions of the GNU/Linux operating system;
their configurations are described more fully in Section 7.

The host is a desktop PC configured as a server. The
monitor is an Intel StrongARM EBSA-285 Evaluation
Board - a single-board computer on a PCI add-in card in-
serted into the host’s PCI bus. The monitor retrieves parts
of host RAM for examination through Direct Memory Ac-
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Figure 1: Copilot monitor prototype testbed architecture

cess (DMA) without the knowledge or intervention of the
host kernel.

The admin station is a laptop workstation that connects
to the monitor via an independent communication link at-
tached to a connector on the back of the EBSA-285 Eval-
uation Board. This independent link allows the monitor to
send reports to the admin station without relying upon the
(possibly compromised) host for communication. It also
allows the admin station to periodically poll the monitor in
order to detect cases where the host has been compromised
and powered-down, or trapped in a cycle of PCI resets that
would prevent all of its PCI devices (the monitor included)
from performing useful work.

In an alternate design, the monitor and admin station
might communicate via cryptographically-protected mes-
sages passed to the host kernel via the PCI bus. This con-
figuration would eliminate the monitor’s need for indepen-
dent communication link hardware, permitting its imple-
mentation on a less expensive board. However, the present
Copilot monitor prototype uses an independent communi-
cation link for two reasons. First, one of the primary goals
of Copilot is to protect an unmodified commodity system.
Communication over the PCI bus would require a driver on
the protected system, thereby violating this goal. Second,
Copilot is much more likely to provide system administra-
tors with useful information in the event of an intrusion if
its messages are guaranteed to reach the admin station. In
the case of a PCI-based reporting mechanism, an attacker
could trivially disable reporting in the protected host, forc-
ing the only sign of trouble at the admin station to be Copi-
lot’s failure to report.

Presently, the Copilot monitor prototype implements a
detection strategy based on MD5 hashes [29] of the host
kernel’s text, the text of any loaded LKMs, and the con-
tents of some of the host kernel’s critical data structures.
Like a number of the user-mode detection programs de-
scribed in Section 3, it calculates “known good” hashes for
these items when they are believed to be in a correct, non-



compromised state. The Copilot monitor then periodically
recalculates these hashes throughout host kernel run-time
and watches for results that differ from the known good
values. The Copilot monitor sends reports of differing hash
values to the admin station where they can be judged to be
the result of either valid administrative kernel modification
(such as dynamic driver loading) or of a malicious rootkit.
This judgment is made manually on the current prototype;
as described in Section 9, automating it is a subject for fu-
ture work.

2 Rootkit taxonomy

Rootkits are collections of software that enable attack-
ers who have gained administrative control of a host to
hide their presence from the host’s genuine administra-
tors. Once installed, rootkits modify the host’s software
to provide an attacker with the ability to hide the existence
of chosen processes, files, and network connections from
other users. Rootkits may also provide convenient back-
doors through which an attacker can regain privileged ac-
cess to the host at will or keystroke logging facilities for
spying on legitimate users. By installing rootkits, attackers
increase the ease with which they can return to and exploit
a compromised host over the course of weeks or months
without being detected.

Rootkits can be partitioned into two classes: those that
modify the host operating system kernel and those that do
not. Those in the second class are simpler and easier to de-
tect. These simple rootkits replace critical system utilities
such as ps, ls, and netstat with modified versions that
deceptively fail to report the presence of an attacker’s pro-
cesses, files, and network connections. However, since the
operating system kernel is not part of the deception, a suspi-
cious administrator can detect the presence of these simple
rootkits by comparing the output of the modified utilities
against the output of unmodified versions obtained from
read-only installation media, or against information pro-
vided directly by the operating system kernel via its /proc
filesystem [3]. Additionally, defensive software is available
which monitors the files containing a host’s critical system
utilities for the kinds of unexpected changes caused by a
simple rootkit installation [18, 24].

Copilot is designed to detect the more complex class of
rootkits that modify the host operating system kernel it-
self to provide deceptive information. The above detec-
tion techniques will fail when run on a sufficiently modi-
fied kernel: when the kernel itself lies, even correct system
utilities can do nothing but pass this false information on
to the user. Section 3 describes the race that is in progress
between authors of complex rootkit detection tools that de-
pend on at least some part of the kernel remaining unmod-
ified and authors of rootkits who respond by increasing the
scope of their modifications. The Copilot project demon-

strates a means of escaping this race by running integrity
monitoring software on a PCI card whose software does
not depend on the health of the host operating system ker-
nel being monitored and is beyond the reach of an attacker.
Copilot’s integrity monitoring strategy is described fully in
Section 6.

There are many rootkits designed to modify the Linux
kernel available on the Internet. The remainder of this sec-
tion describes the workings of a representative sample of
them, listed in table 1. The present Copilot monitor proto-
type has successfully detected the presence of each of the
rootkits listed in this table within 30 seconds of their being
installed on the testbed host.

The example rootkits in table 1 provide a variety of
services. Nearly all are designed to make the kernel re-
turn incorrect or incomplete information when queried by
user-mode programs, in order to hide the presence of the
rootkit and the attacker’s processes and files. Some of them
also provide backdoors allowing remote access to the com-
promised system, or provide a means of privilege escala-
tion to local users. Some of the example rootkits provide
keystroke loggers.

The rootkits in the complete rootkits section of table 1
provide a sufficient amount of deceptive functionality that
they might be of use to an actual attacker. The remaining
rootkits provide only limited functionality and serve only to
demonstrate how a particular aspect of rootkit functionality
might be implemented.

The check-boxes in the table call attention to the rootkit
attributes that are most relevant to a detection tool like
Copilot: the means by which attackers load the rootkits
into the kernel and the means by which the rootkits cause
the kernel to execute their functions.

The first column of table 1 shows that all but one of
the example rootkits are implemented as LKMs and are
designed to be loaded through the kernel’s LKM-loading
interface as if they were device drivers. This fact is signifi-
cant because an unmodified kernel will report the presence
of all loaded LKMs – a stealthy rootkit must take pains to
modify the kernel or its LKM management data structures
to avoid being revealed in these reports. The LKM-loading
interface is not the only means of loading a rootkit into the
kernel, however. The SucKIT rootkit is designed to be writ-
ten into kernel memory via the kernel’s /dev/kmem inter-
face using a user-mode loading program provided with the
rootkit. (The /dev/kmem interface provides privileged
processes with direct access to kernel memory as if it were
a file.) This loading method does not use the kernel’s LKM-
loading interface and consequently leaves no trace in its
data structures.

The remaining columns of table 1 show that the example
rootkits use a variety of means to cause the kernel to exe-
cute their code. Nearly all of them overwrite the addresses
of some of the kernel’s system call handling functions in



rootkit loads overwrites adds new modifies adds hook adds inet
name: via: syscall jump syscall jump kernel text to /proc protocol
Complete rootkits:
adore 0.42 LKM x
knark 2.4.3 LKM x x x
rial LKM x
rkit 1.01 LKM x
SucKIT 1.3b kmem x x
synapsys 0.4 LKM x
Demonstrates module or process hiding only:
modhide1 LKM x
phantasmagoria LKM x
phide LKM x
Demonstrates privilege escalation backdoor only:
kbd 3.0 LKM x
taskigt LKM x
Demonstrates key logging only:
Linspy v2beta2 LKM x

Table 1: Features of example Linux kernel-modifying rootkits

the system call table with the addresses of their own doc-
tored system call handling functions. This act of system
call interposition causes the kernel to execute the rootkit’s
doctored system call handling functions rather than its own
when a user program makes a system call [11, 9].

The rootkit’s doctored functions may implement decep-
tive functionality in addition to the service normally pro-
vided by the system call. For example, rootkits often in-
terpose on the fork system call so that they may modify
the kernel’s process table data structure in a manner which
prevents an attacker’s processes from appearing in the user-
visible process list whenever a the kernel creates a new pro-
cess. Privilege-escalating backdoors are also common: the
rkit rootkit’s doctored setuid function resets the user and
group identity of processes owned by an unprivileged at-
tacker to those of the maximally-privileged root user.

System call interposition is not the only means by which
rootkits cause the kernel to execute their functions, how-
ever. In addition to interposing on existing system calls,
the SucKIT rootkit adds new system calls into previously
empty slots in the kernel’s system call table. The phantas-
magoria rootkit avoids the system call table altogether and
modifies the machine instructions at the beginnings of sev-
eral kernel functions to include jumps to its own functions.
The knark and taskigt rootkits add hooks to the /proc
filesystem that cause their functions to be executed when
a user program reads from certain /proc entries. The
taskigt rootkit, for example, provides a hook that grants the
root user and group identity to any process that reads a
particular /proc entry. The knark rootkit also registers its
own inet protocol handler that causes the kernel to create a
privileged process running an arbitrary program when the

kernel receives certain kinds of network packets.

3 Existing detection software

A number of tools designed to detect kernel-modifying
rootkits are currently available to system administrators.
These software packages make a series of checks on any
number of system resources to determine if that system is
in an anomalous state. In this section, we describe some
of the common and novel approaches taken by a subset of
kernel-modifying rootkit detectors.

There are two categories of kernel-modifying rootkit de-
tectors: those that check for rootkit symptoms by looking
for discrepancies that are detectable from user-space and
those that analyze kernel memory directly to detect changes
or inconsistencies in kernel text and/or data structures. We
refer to these two types of tools as user-space and kernel
memory tools respectively. A number of tools can be con-
sidered both user-space and kernel memory tools, as they
provide detection mechanisms that fall into both categories.
Table 2 summarizes a representative sample of commonly
used rootkit detectors that can, at least to some degree, de-
tect kernel-modifying rootkits. Those tools with a mark
present in the rightmost column perform user-space checks.
Those with marks in either of the two leftmost columns an-
alyze kernel memory through the specified mechanisms.

Even many kernel-modifying rootkits have symptoms
that are readily-observable from user-space, without ac-
cessing kernel memory or data structures directly. For ex-
ample, as previously mentioned, some rootkits add entries
to the kernel’s /proc filesystem. Such entries can often



rootkit Kernel memory access synchronous user-space
detector: /dev/kmem detector LKM detection symptom detection
KSTAT x x x
St. Michael x x
Carbonite x
Samhain x x
chkrootkit x
checkps x
Rkscan x
RootCheck x
Rootkit Hunter x

Table 2: kernel-modifying rootkit detector mechanisms

be found with standard directory lookups and, many times,
even with trusted, non-compromised versions of ls. Sim-
ilarly, a number of LKM rootkits do a poor job of hiding
themselves from simple user queries such as checking for
exported symbols in /proc/ksyms. These symbols are
part of the rootkit’s added kernel text and do not exist in
healthy kernels.

User-space checks fall into two categories: those that
are rootkit-specific and those that are not. The former are
extremely efficient at detecting well-known rootkits using
simple checks for specific directories, files, kernel symbols,
or other attributes of the system. One of the most common
rootkit-specific detectors, chkrootkit, has a set of predeter-
mined tests it performs looking for these attributes. In do-
ing so, it can detect dozens of LKM rootkits currently in
common use.

Non-rootkit specific checks by user-space tools gener-
ally perform two types of tasks. The first is a simple com-
parison between information provided through the /proc
filesystem and the same information as determined by sys-
tem calls or system utilities. One such common check
is for process directory entries hidden from ps and the
readdir system call. The second common user-space
check is for anomalies in the Linux virtual filesystem di-
rectory structure. Some rootkits hide directories, result-
ing in potential discrepancies between parent-directory link
counts and the number of actual subdirectories visible by
user programs.

While user-space checks can prove useful under certain
conditions, they have two fundamental limitations. First,
because they are dependent on interfaces provided by the
kernel, even the most critical of compromises can be con-
cealed with an advanced kernel-resident rootkit. Second,
most of the symptoms that are detectable from user-space
are not general enough to protect against new and unknown
rootkits. However, there is a set of tools whose purpose
is to protect the kernel in a more general way, by watch-
ing for rootkits at the point of attack – in kernel memory.
We first describe the mechanisms used by these tools to

access kernel memory and the shortcomings with each ap-
proach. Then, we provide some general insight into the
types of checks kernel memory protectors perform. Finally,
we briefly introduce four common tools currently used to
detect rootkits using kernel memory.

Not surprisingly, the methods available to rootkit detec-
tors are not unlike those utilized by rootkits themselves.
Unfortunately, easy access to kernel memory is a double-
edged sword. Although it provides for the convenient ex-
tensibility of the Linux kernel through kernel modules, it
also provides for the trivial insertion of new kernel code by
attackers who have gained root privileges. There are two
primary access paths to the Linux kernel, both of which
were discussed in Section 2. The first, /dev/kmem, al-
lows attackers and protectors alike to write user programs
that can arbitrarily change kernel virtual memory. There
is much more overhead involved with a program that uses
/dev/kmem, because symbols need to be ascertained in-
dependently (typically from /proc/ksyms or the Sys-
tem.map file) and data structures need to be processed man-
ually. However, the portability of a tool written in this way
would allow it to work even on kernels built without LKM
support. One major drawback which must be considered by
authors of tools that use /dev/kmem is that the interface
is provided by the kernel – the entity whose integrity they
seek to verify. Because the interface is provided by a ker-
nel code, there is always potential that a rootkit is providing
false information to the user-space tool.

The second method, insertion of an LKM by the tool, can
be a far more powerful approach. First, it gives the tool the
ability to execute code in the kernel, the privileges of which
include the ability to manipulate the scheduler, utilize ker-
nel functions, provide additional interfaces to user-space
programs, and have immediate access to kernel symbols.
The negatives of using an LKM are twofold. First, the ap-
proach clearly will not work in a kernel built without LKM
support. Second, a rootkit already resident in the kernel
could modify, replace, or ignore a module as it sees fit, de-
pending on its sophistication.



Functionality KSTAT St. Michael Carbonite Samhain
Long-term change detection

Hidden LKM detection x x
Syscall table change detection x x x
Syscall function change detection x x x
Kernel text modification detection x
IDT change detection x x

Short-term system state
Hidden process detection x x
Hidden socket detection x x

Extra features
Hides self from rootkits x x
Restore modified text changes x

Table 3: kernel-modifying rootkit detector functionality- detectors that examine kernel memory

Once provided access to kernel memory, tools take a
number of approaches to protect the kernel. First, and per-
haps the most well-known, is protection of the system call
table [16]. As shown in table 1, the vast majority of rootk-
its utilize system call interposition in one form or another.
Rootkit detectors with access to system memory can per-
form a number of checks on the system call table, the most
notable of which is storing a copy or partial copy of the
table and the functions to which it points. This copy is
then used at a later time to make periodic checks of the
table. A similar procedure is also used by some kernel
memory-based detectors to check the interrupt descriptor
table (IDT), and in one case, the entire kernel text.

In addition to protecting text and jump tables within
the kernel, detection tools are used to provide information
about kernel data that cannot easily be obtained from user-
space. Some common examples are the data structures as-
sociated with LKMs, files, sockets, and processes, each of
which can change frequently in a running kernel. Tools
with access to kernel memory can parse and analyze this
data in order to look for suspicious or anomalous instances
of these objects. User-space tools that use /dev/kmem
and LKMs that create new interfaces can compare data ob-
tained directly from the kernel in order to find hidden pro-
cesses, files, sockets, or LKMs.

Table 3 provides a list of four common kernel memory-
based rootkit detection tools. The table also shows a set
of functionality that is common among such detectors, as
well as the specific functionality provided by each tool. We
briefly describe each of these four tools.

KSTAT is a tool for system administrators, used to detect
changes to the interrupt descriptor table, system call vec-
tor, system call functions, common networking functions,
and proc filesystem functions. Additionally, it provides
an interface for obtaining information about open sock-
ets, loaded kernel modules, and running processes directly
from kernel memory. KSTAT relies on /dev/kmem for

its checking, but uses LKMs in two ways. First, the initial
run of KSTAT on a “clean” kernel uses a module to obtain
kernel virtual memory addresses for some of the network-
ing and filesystem functions it protects. Second, because
the module list head pointer is not exported by the Linux
kernel, a “null” module is used to locate the beginning
of the module linked list at each check for new modules.
Change detection is performed by using “fingerprints” of
the original versions. In the case of function protection,
this amounts to the copying of a user-defined number of
bytes at the beginning of the function. Jump tables (e.g.
IDT and system call) are copied in full.

Another popular tool that uses /dev/kmem for kernel
integrity protection is Samhain, a host-based intrusion de-
tection system (IDS) for Unix/Linux [5]. While rootkit de-
tection is not the only function of Samhain, the tool pro-
vides IDT, system call table, and system call function pro-
tection similar to that of KSTAT. Although it does not per-
form all of the functionality with regard to kernel state pro-
vided by KSTAT, Samhain does have one additional fea-
ture – the ability to hide itself. An LKM can be loaded to
hide process and file information for Samhain so that an at-
tacker might not notice the tool’s existence when preparing
to install a rootkit. Because of this feature, administrators
can prevent attackers with root access from recognizing and
killing the Samhain process.

The third tool we discuss is likely the most well-known
rootkit detector tool available – St. Michael [5, 16]. As
part of the St. Jude kernel IDS system, St. Michael at-
tempts to protect kernel text and data from within the ker-
nel itself via an LKM. St. Michael provides most of the
same protection as KSTAT and Samhain with a number
of added features. First, it replaces copy fingerprints with
MD5 or SHA-1 hashes of kernel text and data structures,
thereby covering larger segments of that information. Sec-
ond, St. Michael is the only tool discussed that provides
both preventative and reactive measures for kernel modifi-



cations, in addition to its detection features. The former are
provided through changes such as turning off write privi-
leges to /dev/kmem and performing system call interpo-
sition on kernel module functions in order to synchronously
monitor kernel changes for damage. Because of its syn-
chronous nature, St. Michael has a distinct advantage in
detection time – to the point that it can actually prevent
changes in some cases. The final major advantage of the
St. Michael system is its ability to restore certain parts of
kernel memory in the case of a detected change. By back-
ing up copies of kernel text, St. Michael provides an oppor-
tunity to replace modified code before an attacker utilizes
changes made by a rootkit. However, St. Michael has the
same disadvantages as any LKM-based tool, as described
previously.

The final tool we discuss in this section is another LKM-
based memory tool, known as Carbonite [16]. While the
latest release only works with version 2.2 Linux kernels,
the implementation is an excellent example of integrity pro-
tection on kernel data structures. Carbonite traces all tasks
in the kernel’s task list and outputs diagnostic information
such as open files, open sockets, environment variables,
and arguments. An administrator can then manually audit
the output file in search of anomalous entries. Carbonite is
a good example of a tool that can be used to produce more
specific information after an initial indication of intrusion.

4 Coprocessor Requirements

In order to perform its task of monitoring host memory, the
Copilot coprocessor must meet, at a minimum, the follow-
ing set of requirements:

• Unrestricted memory access. The coprocessor must
be able to access the system’s main memory. Further-
more, it must be able to access the full range of phys-
ical memory- a subset is not sufficient.

• Transparency. To the maximum degree possible, the
coprocessor should not be visible to the host proces-
sor. At a minimum, it should not disrupt the host’s
normal activities and should require no changes to the
host’s operating system or system software.

• Independence. The coprocessor should not rely on
the host processor for access to resources – includ-
ing main memory, logging, address translation, or any
other task. The coprocessor must continue to function
regardless of the running state of the host machine,
particularly when it has been compromised.

• Sufficient processing power. The coprocessor will, at a
minimum, need to be able to process large amounts of
memory efficiently. Additionally, the choice of hash-
ing as a means of integrity protection places on the

coprocessor the additional requirement of being able
to perform and compare such hashes.

• Sufficient memory resources. The coprocessor must
contain enough long-term storage to keep a baseline
of system state. This summary of a non-compromised
host is fundamental to the proper functioning of the
auditor. Furthermore, the coprocessor must have suf-
ficient on-board, non-system RAM that can be used
for its own private calculations.

• Out-of-band reporting. The coprocessor must be
able to securely report the state of the host system.
To do so, there must be no reliance on a possibly-
compromised host, even to perform basic disk or net-
work operations. The coprocessor must have its own
secure channel to the admin station.

The EBSA-285 PCI add-in card meets all of the above re-
quirements and provides a strong foundation for an initial
prototype. The remainder of this section briefly describes
how these requirements are met by our EBSA implementa-
tion, including some of the technical details that enable it
to work in an i386 host.

4.1 Memory Access

The PCI bus was originally designed for connecting de-
vices to a computer system in such a way that they could
easily communicate with each other and with the host pro-
cessor. As the complexity and performance of these de-
vices increased, the need for direct access to system mem-
ory without processor intervention became apparent [26].
The solution provided by manufacturers has been to sepa-
rate memory access from the processor itself and introduce
a memory controller to mediate between the processor and
the many devices that request memory bandwidth via the
bus. This process is commonly referred to as direct mem-
ory access (DMA) and is the foundation for many high-
performance devices found in everyday systems [26].

On any given PCI bus, there are two types of devices:
initiators, or bus masters, and targets [35]. As the names
suggest, bus masters are responsible for starting each trans-
action, and targets serve as the receiving end of the conver-
sation. A target is never given access to the bus without
being explicitly queried by a bus master. For this reason,
bus mastering is a requirement for a device to utilize DMA.
Most modern PC motherboards can support multiple (five
to seven is typical) bus masters at any one time, and all
reasonably performing network, disk, and video controllers
support both bus mastering and DMA. The EBSA-285 has
full bus master functionality, as well as support for DMA
communication with host memory [13].

DMA was designed to increase system performance by
reducing the amount of processor intervention necessary



for device access to main memory [26]. However, since the
ultimate goal is to facilitate communication between the
device and the processor, some information must be shared
by both parties to determine where in memory information
is being stored. In order to account for the separation of
address spaces between the bus and main memory, the host
processor will typically calculate the translation and notify
the device directly where in the PCI address space it should
access [26]. Unfortunately for the EBSA, and for our goal
of monitoring host memory, this separation makes it diffi-
cult to determine where in main memory the device is ac-
tually reading or writing; there is not necessarily an easy
mapping between PCI memory and system memory. How-
ever, in the case of the PC architecture, the designers have
set up a simple one-to-one mapping between the two ad-
dress spaces. Therefore, any access to PCI memory corre-
sponds directly to an access in the 32-bit physical address
space of the host processor. The result is full access to the
host’s physical memory, without intervention or translation
by the host processor.

4.2 Transparency and Independence

As previously mentioned, there are two modes in which
the monitor prototype can be run. While in the first mode
the monitor loads its initial system image from the run-
ning host, the second is a standalone mode that provides
for complete independence with regard to process execu-
tion [23, 24]. As with all add-in cards, the EBSA remains
able to be queried by the host and reliant on the PCI bus
for power in both modes of operation. However, in stan-
dalone mode, the EBSA can be configured to deny all con-
figuration reads and writes from the host processor, thereby
making its execution path immutable by an attacker on the
host.

A creative attacker may find ways to disable the device,
the most notable of which is sending a PCI-reset to pre-
vent the board from accessing main memory. However,
two caveats to this attack are worth noting. First, there is
no easy interface for sending a PCI reset in most systems
without rebooting the machine or resetting all devices on
the bus. Rebooting the host serves to bring unnecessary at-
tention to the machine and may not be advantageous to the
attacker. Furthermore, if the attacker is connected using a
PCI-based network card the PCI reset will also disrupt the
attack itself. Second, in a proper configuration, the admin
station is a completely separate machine from the monitor
and the host. A simple watchdog is placed on the admin
station to insure that the monitor reports as expected. If no
report is provided after a configurable amount of time, an
administrator can easily be notified.

symbol use
text beginning of kernel text
etext end of kernel text
sys call table kernel’s system call table
swapper pg dir kernel’s Page Global Directory
idt table kernel’s Interrupt Descriptor Table
modules head of kernel’s LKM list

Table 4: Symbols taken from System.map

4.3 Resources

As shown by our implementation, the EBSA has suffi-
cient resources to carryout the necessary operations on host
memory. While we have not implemented all possible
memory checks, the process of reading and hashing con-
tinuously has been tested, and the board has proven to per-
form reliably. More about these tests can be found in Sec-
tion 7. In addition to its memory resources, the EBSA also
provides a serial (RS-232) connection for external logging
and console access by the management station. The board
therefore meets all of our requirements.

5 Linux virtual memory

This section describes the two features of the Linux ker-
nel that enable the Copilot monitor to locate specific data
structures and regions of text within the host kernel’s ad-
dress space: linear-mapped kernel virtual addresses and the
absence of paging in kernel memory. In its present form,
Copilot would be unable to effectively monitor a host run-
ning a kernel without these features.

The linear-mapped kernel virtual address feature enables
the Copilot monitor to locate the regions it must monitor
within host kernel memory. As described in Section 1,
when the Copilot monitor wishes to examine a region of
host kernel memory, it makes a DMA request for that re-
gion over the PCI bus. Furthermore, Section 4 explained
that, because of the nature of the PCI bus on the PC plat-
form, the Copilot monitor must specify the address of the
region to retrieve in terms of the host’s physical address
space. This requirement is somewhat inconvenient, be-
cause Copilot takes the addresses of several interesting
symbols from the host kernel or its System.map file at
Copilot configuration time. (These symbols are listed in
table 4.) These addresses, as well as the pointers Copilot
finds in the retrieved regions themselves, are all represented
in in terms of the host kernel’s virtual address space. Con-
sequently, before making a DMA request on the PCI bus,
the Copilot monitor must first translate these host virtual
addresses into host physical addresses.

The Copilot monitor makes this translation by retriev-
ing the page tables maintained by the host kernel’s virtual



memory subsystem via DMA and using them to translate
addresses just as the host kernel does. The nature of linear-
mapped virtual addresses in the Linux kernel enables Copi-
lot to overcome the chicken-and-egg problem of how to re-
trieve the host kernel’s page tables when those same page
tables are seemingly required to initiate DMA. This solu-
tion is described more fully below.

Figure 2 contains a diagram showing two of the three
kinds of virtual addresses used by the host kernel and their
relationship to physical addresses. On the 32-bit i386 plat-
form, the Linux kernel reserves virtual addresses above
0xc0000000 for kernel text and data structures [2, 30].
Virtual addresses between 0xc0000000 and the point
marked high memory in the diagram are called linear-
mapped addresses. There are as many linear-mapped ad-
dresses as there are physical addresses on the host; the
point where high memory lies may be different from host
to host, depending on the amount of RAM each host has.
These addresses are called linear-mapped addresses be-
cause the Linux kernel maps them to physical addresses in
a linear fashion: the physical address can always be found
by subtracting the constant 0xc0000000 from the corre-
sponding linear-mapped address. This linear mapping is
represented by the arrow A in the diagram.

All of the Linux kernel’s page tables reside in this
linear-mapped region of virtual memory. Consequently,
the Copilot monitor can take the virtual address of the top-
most node in the tree-like page table data structure from
System.map and subtract 0xc0000000 to determine
its physical address. It can then use this physical address
to retrieve the topmost node via DMA. The pointers that
form the links between nodes of the page table tree are
also linear-mapped addresses, so the Copilot monitor can
retrieve secondary nodes just as it did the first node.

This simple linear-mapped address translation method is
sufficient to retrieve the host kernel text, its page tables,
and those data structures statically-allocated in its initial-
ized and uninitialized data segments (“data” and “idata” in
the diagram). However, it is not sufficient for retrieving
dynamically-allocated data structures such as the buffers
containing LKM text.

These dynamically-allocated data structures reside in
the region of host virtual memory running from the
high memory point to 0xfe000000. The kernel does
not map these virtual addresses to physical address in a lin-
ear fashion. Instead, it uses its page tables to maintain a
non-linear mapping, represented by the arrow B in the dia-
gram. In order to translate these virtual address to physical
addresses suitable for DMA, the Copilot monitor evaluates
the host kernel’s page tables and performs the translation
calculation in the same way the host kernel does.

The host Linux kernel in the Copilot prototype testbed
organizes its memory in pages that are 4 kilobytes in
size. Because of the linear nature of the address mapping

module cores
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Figure 2: Virtual address translation

between 0xc0000000 and high memory, the Copilot
monitor is guaranteed to find large data structures that span
multiple pages in this region of virtual memory stored in an
equal number of contiguous page frames in physical mem-
ory. Because of this contiguous storage, the Copilot moni-
tor can retrieve them with a single DMA transfer.

However, a single DMA transfer may not be sufficient
for large data structures spanning multiple pages in the non-
linear-mapped region of virtual memory. In this region, the
host kernel’s page tables may map pages that are contigu-
ous in virtual memory onto page frames that are not con-
tiguous in physical memory. Because of this potential for
separation, the Copilot monitor must perform separate ad-
dress translations and DMA transfers for each page when
examining large data structures in this region.

Note that the Linux kernel’s page tables cover only the
part of the virtual address space reserved for the kernel;
their contents do not depend on which processes are cur-
rently running. Note also that there are additional kinds of
kernel virtual addresses not shown in the diagram. These
are the persistent kernel mappings and fix-mapped ad-
dresses residing above 0xfe000000 in the kernel virtual
address space. The Copilot monitor does not yet translate
these addresses; they are not discussed here.

The Copilot monitor also relies on the absence of paging
in kernel memory. Although the Linux kernel will some-
times remove pages of virtual memory belonging to a user
process from physical RAM in order to relieve memory
congestion, it never removes pages of kernel memory from
physical RAM [2]. Consequently, regardless of which user
processes are running or otherwise occupy physical RAM
at the moment the Copilot monitor makes a DMA transfer,
the kernel and its data structures will always be present in
their entirety.



6 Integrity monitoring

This section describes the present Copilot prototype’s strat-
egy for monitoring the integrity of the host kernel. As out-
lined in Section 1’s overview of the prototype, the Copilot
monitor detects changes in critical regions of host kernel
memory by hashing them. Because it looks for changes in
general rather than symptoms specific to a particular set of
well-known rootkits, the Copilot monitor can detect mod-
ifications made by new rootkits never before seen in the
wild. The present Copilot monitor prototype hashes two
classes of host kernel memory: (1) memory containing ker-
nel or LKM text and (2) memory containing jump tables of
kernel function pointers.

The reason for the first class is easily explained: by hash-
ing all of the host’s kernel and LKM text, the Copilot mon-
itor can detect cases where a rootkit has modified some of
the kernel’s existing executable instructions.

The reason for the second class is more complex. Op-
timally, the Copilot monitor would be able to identify for-
eign text added into previously empty regions of host kernel
memory by a rootkit, either via the kernel’s standard LKM-
loading interface or via its /dev/mem or /dev/kmem in-
terfaces. Unfortunately, distinguishing between buffers of
foreign text and buffers of harmless non-executable data is
not easy on PC-compatible systems like the testbed host.
The i386-family of CPUs do not provide a distinct “exe-
cute” permission bit for memory segments containing ex-
ecutable text; there is only a “read” bit used for both text
and non-executable data [2].

Because of this difficulty, rather than attempting to iden-
tify the foreign text itself, the Copilot prototype monitors
places where a rootkit might add a jump instruction or a
function pointer that would cause the existing host kernel
to execute the foreign text. According to the logic of this
workaround solution, foreign text added to empty kernel
memory is harmless provided that it cannot be executed.

The first part of the Copilot monitor’s hashing strategy
covers some of these cases by detecting places where a
rootkit modifies existing host kernel or LKM text to jump
to some foreign text. The second part describes what must
be done to cover the rest: observe all of the host kernel’s
jump tables for additions and changes.

The Linux kernel has many such jump tables. Some,
such as the system call table, are not meant to change
during the kernel’s runtime. Others, such as the virtual
filesystem layer’s file operation vectors, are designed to be
amended and revised whenever an administrator loads or
unloads a filesystem driver. Every LKM can potentially
add more jump tables.

The only kernel jump table hashed by the present version
of the Copilot monitor is the host kernel’s system call vec-
tor – the most popular target of the rootkits surveyed in Sec-
tion 2. Although this presently limited coverage provides

many opportunities for clever rootkits to pass unnoticed, it
is sufficient to demonstrate that host kernel integrity moni-
toring is possible from a coprocessor on a PCI add-in card.

7 Performance

In this section we present empirical results regarding the
performance penalty of our Copilot system. As described
below, Copilot has been shown experimentally to provide
attackers with only a 30-second window while reducing
system performance by less than 1%.

In recent years, it has become a well-known phe-
nomenon that memory bandwidth creates a bottleneck for
CPU efficiency [22]. While the addition of DMA to sys-
tems has increased performance by reducing the number
of processor interrupts and context switches, it has also in-
creased contention for main memory by allowing multiple
devices to make requests concurrently with the processor.
In the case of low-bandwidth devices, such as a simple
network interface card (NIC), this additional memory con-
tention has not proven to be significant. However, recent
work has shown that the advent of high-performance net-
work and multimedia equipment has begun to test the limits
of the penalty for memory access [31, 32].

Because of the nature of our prototype, reading large
amounts of memory periodically using the PCI bus, we
fully anticipate some negative effect on system perfor-
mance. We expect the degradation to be based on two pri-
mary factors. These are, in order of greatest to least signif-
icance, (1) contention for main memory and (2) contention
for the PCI bus. The remainder of this section describes the
penalties we have measured empirically through a set of
benchmarks, the STREAM microbenchmark and the Web-
Stone http server test suite. We conclude that while there is
clearly a temporary penalty for each run of the monitor, the
infrequency with which the system must be checked results
in sufficient amortization of that penalty.

The STREAM benchmark was developed to measure
sustainable memory bandwidth for high-performance com-
puters [22]. While intended for these high-end machines
and memory models, STREAM has proven to be an effec-
tive measure of PC memory bandwidth, at least for compar-
ison purposes. The benchmark has four kernels of compu-
tation, each of which is a vector operation on a vector much
larger than the biggest CPU-local cache. The four kernels
can be summarized as a simple copy operation, scalar mul-
tiplication, vector addition, and a combination of the latter
two.

To test the impact of our monitor on host memory band-
width, we utilized a standard posttest-only control group
design [4]. The experiment was run by bringing the sys-
tem to a known, minimal state and running the STREAM
benchmark. For the purposes of the STREAM tests, mini-
mal is defined as only those processes required for system



Monitor Average Variance Standard Penalty
Status (MB/s) Error

COPY
Off 921.997001 20.896711 0.144557 0.00%
On 833.016002 107.949328 0.328556 9.65%

SCALE
Off 920.444405 14.417142 0.120071 0.00%
On 829.142617 100.809974 0.317506 9.92%

ADD
Off 1084.524918 47.928264 0.218925 0.00%
On 1009.868195 86.353452 0.293860 6.88%

TRIAD
Off 1084.098722 49.922323 0.223433 0.00%
On 1009.453278 82.296079 0.286873 6.89%

Table 5: Summary of STREAM benchmark for 1000 runs with and without the monitor running.

operation, including a console shell. There were no net-
work services running, nor cron, syslog, sysklog, or any
other unnecessary service. We first ran STREAM 1000
times without the monitor running to obtain an average for
each of the four kernels as control values. Similarly, we
ran STREAM 1000 times with the monitor hashing in a
constant while-loop. The monitor would therefore continu-
ously read a configuration file for memory parameters, read
system memory, make a hash of the fields it had read, com-
pare that hash with a known value in a configuration file,
report to the console the status of that hash, and continue
with another memory region.

The results of our experiment, summarized in table 5,
were verified using a standard t-test to be statistically sig-
nificant (p < .001). Table 5 shows the computed mean,
variance, and standard error for each group, separated by
STREAM kernel. The fourth column, Penalty, is the per-
cent difference of the average bandwidth with the monitor
running and the average bandwidth without.

There are a few characteristics of the data worth noting.
First, the greatest penalty experienced in this microbench-
mark was just under 10%. We consider this a reasonable
penalty given that the test environment had the board run-
ning in a continuous loop, a worst-case and unlikely sce-
nario in a production environment. Second, it should be
noted that the variance is significantly higher for the “mon-
itor on” case for all four tests. This can be explained eas-
ily by the asynchronous nature of the two systems. Some-
times, for example when the monitor is working on a hash
and compare computation, the host processor will imme-
diately be given access to main memory. Other times, the
host processor will stall, waiting for the board to complete
its memory read.

The second benchmark utilized was the WebStone
client-server benchmark for http servers. Similar to above,

a standard “monitor on” or “monitor off” approach was
taken to compare the impact of our prototype on system
performance when the system is being used for a common
task – in this case running as an Apache 1.3.29 dedicated
web server. Additionally, we chose to test a third scenario,
whereby the monitor was running, but at more realistic in-
tervals. For the purposes of our experiment, we chose in-
tervals of five, fifteen, and thirty seconds – numbers we
believe to be at the lower (more frequent) extreme for a
production system.

As with the STREAM benchmark, care was taken to
bring the system to a minimal, consistent state before each
trial. While the cron daemon remained off, syslog, sysklog,
and Apache were running for the macrobenchmark tests.
The experiment was conducted using a Pentium III laptop
connected to the server via a Category 5e crossover cable.
The laptop simulated 90-client continuous accesses using
the standard WebStone fileset and was also brought to a
minimal state with regards to system load before the test.
The trial duration was 30 minutes and each trial was per-
formed four times.

Table 6 clearly shows the “continuously running” tests
each resulted in significantly less throughput (shown in
Mb/s) for the Apache web server than the other four cases.
Table 6 presents averages for the four trials of each monitor
status (continuous, off, running at intervals). As can easily
be seen from the data, running the monitor continuously
results in a 13.53% performance penalty on average with
respect to throughput. Fortunately, simply spacing moni-
tor checks at intervals of at least 30 seconds reduces the
penalty to less than 1%. As expected, the more frequently
the monitor runs, the more impact there is on system per-
formance.

We believe the data supports our original assessment that
memory contention and PCI contention are the primary



Monitor Average Variance Standard Penalty
Status (MB/s) Error

Off 88.842500 0.000158 0.006292 0.00%
30-second Intervals 88.097500 0.000892 0.014930 0.84%
15-Second Intervals 87.427500 0.000158 0.006292 1.59%
5-Second Intervals 85.467500 0.000158 0.006292 3.80%
Continuous 76.830000 0.002333 0.024152 13.52%

Table 6: Summary of WebStone Throughput results for 90 clients.

threats to performance. Because the Web server utilizes a
PCI add-in card NIC, it is likely that the system was signif-
icantly impacted by PCI scheduling conflicts between the
EBSA and NIC card, as well as memory contention be-
tween the EBSA/NIC (whichever got control of the PCI)
and the host processor; note that the NIC driver utilizes
DMA and so would also compete with the processor for
memory cycles. We did not, however, perform any direct
analysis of PCI contention and therefore cannot conclude
this was the exact reason for decreased throughput.

The second, and more important, conclusion that arises
from the WebStone data is that the penalty for running the
system periodically is far less than that of running it con-
tinuously. Furthermore, since the monitor is meant to com-
bat attackers who typically exploit vulnerabilities and then
return days or weeks later to the system, the chosen inter-
val of 30 seconds is an extremely conservative estimate for
production systems. In addition, because of the configura-
bility of the prototype solution, system administrators who
are experiencing unacceptable performance losses can sim-
ply increase the interval.

8 Limitations

As described by Zhang [39], the fundamental limitation of
a coprocessor-based kernel monitor is its inability to inter-
pose the host’s execution. For a PCI-based implementation
such as Copilot, the view of the monitor is limited to main
memory; there is no means of pausing the host CPU’s ex-
ecution or examining its registers. For this reason, Copilot
will never be able to guarantee an invalid piece of code has
not been executed. However, because Copilot can monitor
main memory, the window of opportunity for an attacker to
perform a successful attack without Copilot noticing is lim-
ited to timing attacks and extremely advanced relocation
attacks. This section describes the difficulty of monitoring
rapidly-changing host kernel data structures and both types
of attacks that are currently feasible without Copilot detec-
tion.

Race conditions: Because the Copilot monitor accesses
host memory only via the PCI bus, it cannot acquire host
kernel locks as processes on the host can. Consequently,

it may find host kernel data structures in an inconsistent
state if its DMA requests are satisfied while a host process
is modifying them. This limitation does not interfere with
Copilot’s ability to examine the static parts of the host ker-
nel, such as its text and system call table. For data struc-
tures that change in response to relatively infrequent ad-
ministrative actions, such as the host kernel’s loaded LKM
list, the Copilot monitor can compensate for the occasional
inconsistent reading by reporting the trouble and repeating
the examination.

However, for data structures that change much more
rapidly during run-time, such as the host kernel’s process
table, repeated examinations seem unlikely to reveal the
data structure in a consistent state. There would be some
value in overcoming this limitation, as some rootkits mod-
ify the state of a host kernel’s process table in order to con-
ceal the presence of an attacker’s processes.

Despite this limitation, the present Copilot monitor pro-
totype manages to provide effective integrity monitoring
functionality. Consequently, the cost of this potential for
race conditions does not outweigh the value of the protec-
tive separation from the host provided by running the Copi-
lot monitor on a PCI add-in card.

Timing attacks: The Copilot monitor is designed to run
its checks periodically: every 30 seconds by default in the
present prototype. A clever rootkit might conceivably mod-
ify and rapidly repair the host kernel between checks as
a means of avoiding detection, although this lack of per-
sistent changes would seem to decrease the utility of the
rootkit to the attacker. In order to prevent such evasion
tactics from working reliably, the Copilot monitor might
randomize the intervals between its checks, making their
occurrences difficult to predict [23].

Relocation/cache attacks: Copilot works because it has
a picture of what an uncompromised system would look
like under normal conditions. The fundamental assump-
tion underlying detection of malicious modifications is that
such attacks would result in a different view of the parts of
memory monitored by Copilot. However, if an adversary
were able to maintain a consistent view of Copilot’s moni-
tored memory while hiding malicious code elsewhere, such
as in the processor cache, this code would remain unde-



tected by Copilot. However, it is currently unclear to what
extent such attacks would succeed on a more permanent
scale. Caches get flushed frequently and more extensive at-
tempts to relocate large portions of the operating system or
page tables would likely require difficult changes to all run-
ning processes. Future work will investigate the degree to
which such highly sophisticated attacks are feasible with-
out Copilot detection.

9 Future work

This section discusses a number of ways in which the
present Copilot monitor prototype might be improved
through future work.

Administrative automation: Version 2.4 and 2.6 Linux
kernels provide many jump tables where LKMs can regis-
ter new functionality for such things as virtual filesystems
or mandatory access control. When Copilot monitors the
integrity of such jump tables, it is designed to report any
additions or changes it sees to the admin station, regardless
of whether they were caused by a rootkit or by valid ad-
ministrative action (such as loading a filesystem or security
module).

As noted in Section 1, in the present Copilot monitor
testbed, a human administrator is responsible for distin-
guishing between these two possible causes whenever a re-
port arrives. For example, administrators might disregard a
report of changes to the host kernel’s security module op-
eration vectors if they themselves have just loaded a new
security module on the host. Future work might increase
the level of automation on the admin station by implement-
ing some kind of policy enforcement engine that will al-
low reports of certain modifications to pass (perhaps based
on a list of acceptable LKMs and the data structures they
modify), but act upon others as rootkit activity. Further
improvements to the admin station might enable central-
ized and decentralized remote management of multiple net-
worked Copilot monitors.

Filesystem monitor integration: The Copilot moni-
tor prototype is the successor of an earlier filesystem in-
tegrity monitor prototype developed by Molina on the same
EBSA-285 PCI add-in card hardware [23, 24]. Rather than
examining a host’s kernel memory over the PCI bus, this
monitor requested blocks from the host’s disks and exam-
ined the contents of their filesystems for evidence of rootkit
modifications. Future work could integrate the Copilot
monitor’s functionality with that of the filesystem monitor,
implementing both monitors on a single PCI add-in card.
This integrated monitor could provide multiple layers of
defense by monitoring the integrity of both the host oper-
ating system’s kernel and the security-relevant parts of its
filesystems.

Replacing corrupted text: As discussed in Section 3,
some existing kernel-modifying rootkit detectors have the

ability to replace certain parts of a corrupted system. These
sections include certain jump tables, such as the system call
vector, as well as kernel text. Based on the same DMA
principles that give Copilot access to read system memory,
it should be similarly possible to provide replacement of
corrupted text through the same mechanism. We currently
plan to investigate possibilities for kernel healing, particu-
larly as it relates to the automated administration discussed
above.

Known good hashes: Like many of the user-mode
rootkit detection programs described in Section 3, the
present Copilot monitor prototype generates its known
good hashes by examining the contents of host kernel
memory while the host kernel is assumed to be in a non-
compromised state. This practice admits the possibility of
mistaking an already-compromised kernel for a correct one
at Copilot initialization time, causing Copilot to assume the
compromised kernel is correct and never report the pres-
ence of the rootkit. This concern is particularly relevant in
the case of LKMs, which Copilot hashes only after the host
kernel loads them late in its runtime.

This limitation might be addressed by enabling the Copi-
lot monitor to generate its known-good hashes from the
host’s trustworthy read-only installation media. This task
is not as straightforward as it seems, however. The image
of the host kernel’s text stored on the installation media
(and on the host’s filesystem) may not precisely match the
image that resides in host memory after host bootstrap. For
example, the Linux 2.6 VM subsystem’s Page Global Di-
rectory resides amid the kernel text. This data structure
is initialized by the host kernel’s bootstrap procedure and
subsequently may not match the image on the installation
media. Nonetheless, it may be possible to predict the full
contents of the in-memory image of the host kernel from
its installation media, perhaps by simulating the effects of
the bootstrap procedure. Exploration of this possibility is a
topic of future work.

Jump tables: As noted in Section 6, the Linux kernel
has many jump tables. Any of these jump tables may be-
come the target of a rootkit seeking to register a pointer to
one of its own functions for execution by the kernel. Every
LKM can potentially add more jump tables. The present
Copilot prototype monitors the integrity of only a few. Fu-
ture work can extend this coverage, perhaps in an attempt
to cover the jump tables of some particular configuration of
the Linux kernel, using only a specific set of LKMs.

10 Related work

This section provides a brief summary of work related to
the Copilot monitor. As discussed in Section 9, the Copilot
monitor owes a debt to earlier work by Molina [23, 24] that
demonstrated the use of the EBSA-285 PCI add-in card as
a filesystem integrity monitor. As with the Copilot monitor,



the use of the EBSA-285 allowed the filesystem monitor to
operate correctly even in cases where the host kernel was
compromised – an advantage over monitors such as Trip-
wire [18] that run on the host itself.

Copilot’s integrity monitoring activities can be viewed
as a kind of intrusion detection – its memory hashing tech-
nique may be likened to an attempt to distinguish between
“self and non-self” in the host kernel [7]. Useful intrusion
detection functionality has been demonstrated in a variety
of ways [28]; while most of these techniques focus on de-
tecting misbehavior in user programs rather than in the ker-
nel, some gather information in kernel-space [33, 19].

Concurrently with Molina’s work on coprocessor-based
filesystem intrusion detection, Zhang et al. proposed using
a secure coprocessor as an intrusion detection system for
kernel memory [39]. Specifically, the authors describe a
method for kernel protection that consists of identifying in-
variants within kernel data structures and then monitoring
for deviations. This strategy of interpreting and comparing
kernel data structures is very similar to that of Copilot.

However, there are a number of significant differences
between Zhang’s work and Copilot. Most notably, Zhang’s
design was not implemented on an actual coprocessor, but
instead a proof-of-concept LKM was used to track critical
kernel data structures. The use of an LKM allowed the au-
thors to concentrate on determining which kernel invariants
would be potential targets for a real implementation. While
the authors propose using a PCI-based cryptographic co-
processor as the basis for their design, they fail to point
out some of the inherent difficulties facing a real imple-
mentation such as virtual memory translation and bus-to-
physical address translation. In addition, without having
implemented the design, the authors conclude that the num-
ber of detection samples will be limited by the processing
power of the coprocessor. As discussed in Section 7, exper-
iments have suggested that contention for the bus and main
memory are more likely to be the limiting factor.

Many other projects have explored the use of coproces-
sors for security. The same separation from the host which
allows the Copilot monitor to operate despite host kernel
compromise is also useful for the protection and safe ma-
nipulation of cryptographic secrets [38, 12, 14, 20].

There have been at least two demonstrations of prob-
abilistic techniques for kernel integrity-monitoring that
operate without the use of additional hardware such as
Copilot-style PCI add-in cards. These techniques involve
a monitor host that sends computational challenges to a
target host. The target host must run a verification pro-
cedure to calculate the correct response within a carefully-
calculated time limit. The verification procedure is struc-
tured in a manner that makes it probable that a compro-
mised target host will either return an incorrect result, or
take too long in coming up with a convincing lie. Deter-
mining the proper time limit requires intimate knowledge

of all aspects of the target host’s hardware that might effect
the speed of its verification procedure calculation, from the
timing of various instructions to the size of the CPU’s cache
and translation lookaside buffer.

One of these techniques, SWATT [34], is designed to
monitor embedded devices without virtual memory support
and is consequently not applicable to the virtual memory-
using PC-architecture GNU/Linux hosts targeted by Copi-
lot. Furthermore, because of the nature of the SWATT veri-
fication procedure, if it were run on a PC-architecture host,
it would have to hash the host’s entire physical memory,
rather than just those parts which contain static text and
data. Consequently all of the host’s dynamic data, includ-
ing runtime stacks and heaps, would need to be in a known
state in order for the calculation to return a correct result.
Although this requirement may be reasonable on some em-
bedded devices, it would be unrealistic for the hosts tar-
geted by Copilot.

Kennell and Jamieson [17] have demonstrated a re-
lated technique that, unlike SWATT, is designed to moni-
tor the same PC-architecture GNU/Linux hosts as Copilot.
Their technique requires the target host to run a specially-
modified Linux kernel that includes a verification proce-
dure at the head of its linear-mapped static text segment.
This verification procedure is capable of probabilistically
verifying its own integrity and the integrity of the static
kernel text. The authors predict that this initial verification
procedure could demonstrate the integrity of an additional
second-stage verification procedure also implemented in
the static portion of the kernel text. This second-stage veri-
fication procedure might use a different algorithm to verify
the integrity of the dynamic portions of the kernel that are
beyond the initial verification procedure’s reach.

When compared with Copilot, Kennell and Jamieson’s
technique possesses the advantage that it requires no ad-
ditional hardware. Copilot, on the other hand, is capable
of monitoring unmodified commodity Linux kernels. Both
techniques appear to provide effective integrity monitor-
ing. However, the Kennell and Jamieson verification pro-
cedure must disable hardware interrupts during its compu-
tation. Their prototype benchmark results show an entire
challenge, compute, encrypt, response dialog taking 7.93
seconds on a 133MHz Intel Pentium-based PC. Because
the effectiveness of the technique depends upon the com-
pute portion dominating the time taken for the entire dia-
log, this suggests the PC spent the bulk of this time with
interrupts turned off. Kennell and Jamieson do not provide
benchmark results showing the effect of their technique on
overall application performance; a comparison with Copi-
lot’s results in section 7 is consequently not possible.

Investigations into secure bootstrap have demonstrated
the use of chained integrity checks for verifying the validity
of the host kernel [15, 1]. These checks use hashes to ver-
ify the integrity of the host kernel and its bootstrap loader



at strategic points during the host’s bootstrap procedure. At
the end of this bootstrap procedure, these checks provide
evidence that the host kernel has booted into a desirable
state. The Copilot monitor operates after host kernel boot-
strap is complete and provides evidence that the host kernel
remains in a desirable state during its runtime.

There are many software packages intended to detect
the presence of kernel-modifying rootkits, including St.
Michael and St. Jude [16]. However, these software pack-
ages are intended to run on the host that they are monitoring
and will operate correctly only in cases where a rootkit has
not modified the behavior of the kernel’s /dev/mem and
/dev/kmem interfaces to hide its own presence. Because
it runs on a coprocessor on a separate PCI add-in card, the
Copilot monitor does not share this dangerous dependence
on the correctness of the host kernel and can be expected to
operate correctly even in cases where a rootkit has arbitrar-
ily modified the host kernel.

Kernel-resident mandatory access control techniques
represent a pro-active alternative (or compliment) to the
reactive approach of the Copilot monitor and other in-
trusion detection mechanisms. Rather than detecting the
presence of a rootkit after an attacker has installed it on
a host, these techniques seek to prevent its installation
in the first place [36]. There have been many demon-
strations of mandatory access control on the Linux ker-
nel [6, 8, 25, 21, 27, 10]; the latest versions of the Linux
kernel contains a Linux Security Modules interface specif-
ically to support these techniques [37]. However, even sys-
tems with extensive mandatory access controls can fall prey
to human failures such as stolen administrative passwords.
Copilot is designed to detect rootkits in hosts compromised
by such failures.

11 Conclusion

The Copilot project demonstrates the advantages of imple-
menting a kernel integrity monitor on a separate PCI add-in
card over traditional rootkit detection programs that run on
the potentially infected host. Because the Copilot moni-
tor software runs entirely on its own PCI add-in card, it
does not rely on the correctness of the host that it is mon-
itoring and is resistant to tampering from the host. Conse-
quently, the Copilot monitor can be expected to correctly
detect malicious kernel modifications even on hosts with
kernels too thoroughly compromised to allow the correct
execution of traditional integrity monitoring software. The
Copilot monitor does not require any modifications to the
host’s software and can therefore be easily applied to com-
modity systems.

The Copilot monitor prototype has proven to be an ef-
fective kernel integrity monitor in tests against 12 com-
mon kernel-modifying rootkits. In its default configuration,
the Copilot monitor prototype can detect changes to a host

kernel’s text, LKM text, or system call vector within 30
seconds of being made by a rootkit. Its monitoring activ-
ities do not require the consent or support of the host ker-
nel and cause minimal overhead: for example, less than a
1% throughput performance penalty on a 90-client Web-
Stone webserver benchmark. Because its hashing-based
approach detects changes in general, rather than focusing
only on specific symptoms of a well-known set of rootk-
its, the Copilot monitor can detect both known rootkits and
new rootkits not seen previously in the wild.
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